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Abstract

Many biochemical systems are spatially heterogeneous and exhibit nonlinear
behaviors, such as state switching in response to small changes in the local
concentration of diffusible molecules. Systems as varied as blood clotting,
intracellular calcium signaling, and tissue inflammation are all heavily in-
fluenced by the balance of rates of reaction and mass transport phenomena
including flow and diffusion. Transport of signaling molecules is also affected
by geometry and chemoselective confinement via matrix binding. In this re-
view, we use a phenomenon referred to as patchy switching to illustrate the
interplay of nonlinearities, transport phenomena, and spatial effects. Patchy
switching describes a change in the state of a network when the local concen-
tration of a diffusible molecule surpasses a critical threshold. Using patchy
switching as an example, we describe conceptual tools from nonlinear dy-
namics and chemical engineering that make testable predictions and provide
a unifying description of the myriad possible experimental observations. We
describe experimental microfluidic and biochemical tools emerging to test
conceptual predictions by controlling transport phenomena and spatial dis-
tribution of diffusible signals, and we highlight the unmet need for in vivo
tools.
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INTRODUCTION

Biochemical reactions rarely occur in a perfectly homogeneous environment. With the exception
of a well-mixed test tube, molecules and cells are dispersed unevenly through complex matrices,
whether inside a cell, culture dish, or tissue. Furthermore, the reactions themselves are moving in
space—molecules and cells are transported by diffusion, convection, and cellular motion, except
when bound to relatively stationary support structures such as the extracellular matrix (ECM).

Historically, scientists have had better tools for controlling rates of reactions than for ma-
nipulating transport phenomena. Quantification of the rates of reactions affecting signaling
molecules—for example, rate of enzymatic activity, rate of cellular secretion, and levels of
gene expression—is standard in biological experiments, and modulating reaction rates (via small
molecules, siRNA, inactivating antibodies, etc.) is common in basic science and medicine. In con-
trast, characterization and especially control of transport phenomena (1)—for example, diffusion,
flow, effects of spatial arrangement, and effects of binding to the ECM (2–4)—have been more
challenging. Yet, when these experiments are performed, they suggest that changes in transport
rates can be significant enough to perturb the local concentration of a signal. For example, bind-
ing of basic fibroblast growth factor (bFGF) to heparan sulfate (Kd ∼ 24 nM) slows its diffusion
(5) through the basement membrane by >125-fold. Such a large change in local concentration
can strongly affect the state of a biochemical network when the kinetics of the network depend
nonlinearly on concentration (6). If a system shows threshold dependence on the concentration
of the signal [e.g., in growth factor signaling (7)], this change may be sufficient to drive switching
to a new state.

TRANSPORT AND THRESHOLD KINETICS DRIVE
PATCHY SWITCHING

Definition of Patchy Switching

To illustrate the interplay of nonlinear reaction kinetics, changes in local concentrations, and mass
transport phenomena, in this review we focus our attention on biological systems that switch their
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Figure 1
In patchy switching, local accumulation of diffusible triggers causes transitions between biological states,
shown here for OFF and ON (red starburst) states. Triggers accumulate to high concentration (dark blue)
only when their removal by transport ( green arrows) is slower than their net production (red arrows). The
competition between reaction and transport is described by a unitless quantity termed the Damköhler
number (Da).

state in response to a change in local concentrations of diffusible molecules, which we call triggers
(Figure 1). Although this phenomenon may sound specialized, it is actually quite common. Intu-
itive examples of state switching occur in blood coagulation (clotted/not clotted), cellular signaling
networks (signaling on/off ), quorum sensing (swarming/resting), neural dynamics (firing/not fir-
ing), and stem cell differentiation (pluripotent/differentiated). For a more rigorous description of
state switching, we refer the reader to reviews of dynamical systems (8) and transitions between
macro states in statistical thermodynamics (9). Triggers that control the state of a system as a re-
sult of a change in concentration include small molecules, proteins, and enzymes. For simplicity,
here we focus on molecular triggers, although such state switching may also occur in response to
changes in the local concentration of larger structures, such as vesicles or cells. All of these molec-
ular triggers are subject to mass transport, and therefore their local concentrations are controlled
by the balance of production, degradation, and mass transport phenomena.

A dramatic effect arises if two conditions are met: (a) triggers are localized or produced in a
cluster we call a patch and (b) the system can switch from OFF to ON when triggers are present
above a critical threshold concentration. When the local concentration of triggers near a patch
passes through its critical threshold value, we call the state change patchy switching (Figure 1).
For a concrete example, consider a small injury to a blood vessel that exposes blood to a patch
of subendothelial tissue. This patch of damaged vasculature contains proteins, including tissue
factor (TF) and collagen, which begin adhering platelets and activating an enzymatic cascade that
can lead to a blood clot (10). Clotting occurs only when activated enzymes accumulate above
a threshold concentration (11, 12), so this scenario meets the two conditions described above.
Whether or not a clot forms and grows from the patch of damage depends on the balance between
the net rate of enzyme activation (activation minus consumption and inhibition) and the rate of
removal of those enzymes by flow or diffusion (13).

The concept of patchy switching is not new, though appreciation for it has remained mostly
confined to specific fields. Switching driven by mass transport effects is predicted by classical
theory in chemistry, including work by Turing on the chemical basis of morphogenesis and work
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on the chemical dynamics of nonequilibrium systems (14, 15), and related approaches in chemical
engineering (16). Patchy switching phenomena are a core concept in mathematical biology and
ecology, especially in the context of population dynamics (17, 18). The critical balance among
production, rapid degradation, and limited transport of growth factors through the extracellular
matrices is a factor in tissue engineering design (3, 19); this balance has also been described for
cancer niches and microenvironments (20, 21) and stem cell signaling (22). In this review, we
use these ideas to illustrate the underlying principles that can describe many seemingly disparate
examples of switching from biochemistry and cell and tissue biology.

Although any nonlinear system will respond to any change in spatial distribution (23), we have
chosen to focus on the specific example of patchy switching because conceptually it is relatively
simple, yet it can show dynamics that appear counterintuitive unless transport phenomena are
considered. Now is an exciting time to study the effects of spatial distribution and mass transport
of diffusible signals because newly emerging microfluidic and biochemical tools are revealing the
interplay of reactions, transport, and spatial effects on the cellular scale. Throughout this review,
we speculate on biochemical systems in which phenomena such as patchy switching are likely to
occur, and we provide suggestions on how emerging tools might be used to probe these systems.

Dynamics of Patchy Switching Predicted by the Damköhler Number

The relationship between transport and concentration in dynamical systems can quickly become
complex, making it difficult to model and develop the intuition to make predictions. For example, in
blood coagulation, the transport of coagulation enzymes is influenced by diffusion, flow, binding to
cell surfaces and protein scaffolds, and secretion from platelets; importantly, the reaction network
displays nonlinear responses due to multiple positive and negative feedback reactions. How does
one begin to interpret and probe the interplay of reactions and transport phenomena in complex
systems like this? Fortunately, concepts from chemical engineering can be used to unify the
seemingly disparate features of a system, such as reaction rate, clustering of molecules, and binding
to the ECM, into a single coherent description. For example, for patchy switching, all of these
features are integrated into a simple dimensionless number that predicts the state of the system,
termed the Damköhler number (Da). Da is the ratio of production and transport, and conveniently
it can be defined in terms of either rates (R, 1/s or mol/s) or timescales (τ , s):

Da = Rreaction

Rremoval
= τremoval

τreaction

When Da� 1, triggers exceed a threshold concentration and the system will turn ON, whereas
when Da � 1 the system will turn OFF (Figure 1). It is important to note that these are net
rates. Thus, Rreaction is the net rate of the production of triggers—in other words, it is equal to
the difference between the total rate of all reactions that produce triggers and the total rate of all
reactions that degrade or inhibit them. Alternatively, using timescales enables the estimation of
Da even when rates are unknown. Thus, τ reaction can be defined empirically as the time needed
for a system to reach the threshold concentration of the trigger (in the absence of transport).
Similarly, Rremoval and τ removal refer to the net removal of triggers from the region of the patch
by mass transport phenomena: diffusion, flow, transport by motile cells, etc. For example, in a
system in which triggers are produced by the patch, τ removal would be decreased by faster flow past
the patch, whereas it would be increased by the trigger binding to matrix structures. Changes in
spatial distribution drive patchy switching by changing τ removal.
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No
patch
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triggers Triggers are removed
by diffusion and flow
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Da << 1
Da < 1
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Figure 2
Balance of production and removal of triggers controls patchy switching and is described by the Damköhler number (Da). In each
panel, the plot above depicts the concentration of triggers (C) for each scenario. (a) Three scenarios for the distribution of activators
( gray spheres). “No patch” refers to molecules or cells being dispersed. (b) Activators produce triggers (blue) at a fixed rate per activator
(red arrows). (c) Diffusion removes triggers ( green arrows) with greater effect on smaller patches. (d ) For a certain threshold
concentration of triggers (C∗, gray dotted line), only the large patch accumulates triggers above the threshold and has Da > 1 (ON, red
starburst). The no patch and small patch groups are both below the threshold and have Da < 1 (OFF).

Predicting Patchy Switching in Response to Patch Size

As one example of the effect of spatial distribution on the state of a nonlinear biological system,
consider the effect of patch size. Suppose that a patch consists of a cluster of activators (e.g., TF
molecules). Each activator produces triggers (e.g., activated clotting enzymes) at a constant rate.
Therefore, τ reaction is independent of the size of the patch in the absence of mass transport. Thus,
isolated activators, small patches, and large patches all would increase the local concentration of
the trigger on the same timescale (Figure 2a,b). In contrast, τ removal depends on the size of the
patch. For diffusion, the timescale is τD ∼ x2/D (seconds), where x is the radius of the patch
(meters) and D is the diffusion constant (m2/s) of the trigger. A freely diffusing trigger is removed
rapidly from isolated molecules or cells, more slowly from a small patch, and slowest from a large
patch (Figure 2c). Removal of a trigger by flow would have a pattern similar to diffusion but
is not depicted here. In summary, the larger the patch, the more the trigger accumulates. For
a sufficiently large patch (larger than a so-called critical patch size), Da is �1, and the trigger
accumulates above the threshold concentration to turn the system ON (e.g., clotted). In contrast,
systems with smaller or no patches remain OFF (Da � 1) (Figure 2d). Thus, changes in the
size of a patch can also initiate patchy switching. Once state switching is initiated, it can even
propagate outward from the patch (e.g., Figure 3a) in the presence of positive feedback loops,
such as autocatalytic production of thrombin during blood clotting (24).

We emphasize that this example of state switching is not meant to be all-encompassing. We use
this type of patchy switching (switching ON when the local concentration of diffusible molecules
crosses a threshold) throughout the review for clarity, but the tools and methods described apply
to a broad range of state switching systems in which mass transport phenomena play a role. For
example, if the patch in Figure 2 produced inhibitors instead of triggers, then larger patches would
be OFF and smaller patches would be ON. Here we have focused on binary switches between
two possible states, but the same reasoning also applies to biological systems that have more than
two potential states, such as stem cells, which can remain pluripotent or differentiate into any of
several different cell types.

State switching in response to patch size has been observed in several biochemical and cellular
systems (Figure 3). For example, the enzymatic network of blood coagulation could be switched
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from a quiescent to a clotted state by increasing the size of micropatterned patches of TF, even
though the total quantity of TF remained the same (Figure 3a) (25). As discussed above, one
expects to observe patchy switching in this network because there are threshold responses to sol-
uble triggers involved in coagulation (12), such as the proteases thrombin (26) and factor Xa (11).
Eukaryotic calcium signaling is another threshold-mediated system in which autocatalysis plays a
role, and patchy switching has been observed here as well. Specifically, the ubiquitous intracellular
inositol (1,4,5)-triphosphate (IP3) receptor releases soluble Ca2+ from the endoplasmic reticulum
in response to above-threshold concentrations of IP3 (27). This release drives a positive feedback
loop in which the released Ca2+ ions activate nearby IP3 receptor clusters to release more calcium
(28, 29). Interestingly, when soluble IP3 was loaded at varying concentrations into murine pan-
creatic and parotid cells, Ca2+ signals transitioned from small local spikes to global waves, a state
change that depended on the density of IP3 receptors in the cells (Figure 3b) (30).

In another example, at larger scales, the direction of stem cell differentiation was shown to be
potentiated by the size of stem cell embryoid bodies generated in microfluidic wells (3, 27). Studies
by two independent groups have shown that small embryoid bodies remained inert to neurodiffer-
entiation, whereas larger clusters (>250–350 μm in diameter) adopted a neural morphology with
extensive neurite formation (Figure 3c) (27, 31). The mechanism of this is still unclear and may
or may not be due to diffusible signals, although the role of diffusible stem cell signals is being
actively investigated (22, 32).

In the sections that follow, still using patchy switching as the example, we discuss recent
developments in microfluidics and chemistry that provide experimental control over factors that
affect the local balance (Da) of reactions (Figure 4a) and transport (Figure 4b), such as patch size,
clustering, confinement, and the effects of flow and changing diffusivity.

MICROSCALE CONTROL OVER TRANSPORT PHENOMENA

Controlling Patch Size and Clustering

Changing the patch size, x, by patterning cells or molecules (while keeping their numbers constant)
affects the Da number by changing the diffusion time of soluble triggers away from the patch,
τD ∼ x2/D (Figures 2c and 4b,i). To help determine whether patchy switching plays a role in a
system of interest, a wide range of tools, many based on photochemistry (33) and soft lithography
(a range of biocompatible micropatterning techniques) (29), can be used to pattern molecules
and cells onto in vitro surfaces (Figure 5a) (34). Multiple molecular or cellular entities can be
patterned separately or in close proximity to one another (Figure 5b,c) (35–39), for example, to

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Switching in response to changes in spatial distribution. (a, i ) Blood coagulation (blue) is initiated on micropatterned patches of tissue
factor (red ) only if they are larger than a critical size, quantified in subpanel ii. Panel a adapted with permission from
Reference 25, c© 2006 National Academy of Sciences, USA. (b, i, top) Only localized Ca2+ puffs were produced in response to local
release of photocaged inositol (1,4,5)-triphosphate (IP3) in murine pancreatic cells expressing low density of inositol trisphosphate
receptors (InsP3R); (b, i, bottom) global Ca2+ (blue) waves were switched on in response to local release of photocaged IP3 in murine
parotid cells expressing high density of InsP3R (30). (b, ii ) A plot showing that parotid cells have a lower threshold IP3 concentration
for maximum Ca2+ release than the pancreatic cells. Panel b adapted from Reference 30 with permission. (c, i ) Embryoid bodies
preferentially differentiated into neural precursor cells ( green) with long neurites (red, quantified in subpanel ii ) only when they were at
least 500 μm in size. Panel c adapted from Reference 27 with permission. (d, i ) Plucking hairs on the skin of mice induced amplified
hair regeneration only when hairs were plucked above a threshold density, quantified in subpanel ii. Red circles in images show the
regions from which 200 hairs were plucked 30 days prior to the photo. Panel d adapted from Reference 63 with permission.
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Figure 4
Various mechanisms for inducing patchy switching by changing the Damköhler number. (a) Altering the local concentration of a
trigger (blue) by increasing its rate of production by the activators in the patch ( gray spheres) can turn a system with threshold kinetics
ON (red starburst). Inhibitory binding of a trigger on the extracellular matrix (ECM) also can turn the system OFF, whereas degrading
the ECM can restore the ON state. (b) Altering transport (i–iii ) by limiting diffusional flux increases the local concentration and can
turn the system ON, whereas increasing removal (iv) by increasing the rate of convection or active transport ( green arrows) decreases
the local concentration and can turn the system OFF. Each of these processes can also occur in reverse.
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Figure 5
Controlling patch size and clustering using chemistry, microfluidics, and local drug delivery systems. (a) Two-dimensional patches of
human oral squamous carcinoma cells micropatterned using a peel-off perylene stencil. Panel a reproduced from Reference 34 with
permission. (b) Three-dimensional (3D) tumor spheroids formed and stained (inset, green) in microfluidic traps. Panel b adapted from
Reference 37 with permission. (c) Two-dimensional chemical patterning of 3D microcultures containing rat fibroblasts ( green) or
human lung adenocarcinoma cells (blue) using DNA templates. Panel c reproduced from Reference 35 with permission. (d ) Localized
chemical stimulation (red ) of a murine lymph node slice cultured in a microfluidic chamber. The slice was immunostained for B cells
( green) and counterstained with Hoechst (blue), allowing specific regions to be targeted for stimulation. Panel d reproduced from
Reference 53 with permission from The Royal Society of Chemistry. (e) Microchip implanted in a human to locally deliver discrete
doses of a hormone fragment, which increased bone formation in women with osteoporosis. Panel e adapted from Reference 160 with
permission.
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study heterotypic interactions among patches (39). In addition to providing the ability to culture
materials on two-dimensional (2D) surfaces, these micropatterning and microfluidic tools are
well suited to the generation of size-controlled three-dimensional (3D) cultures of microtissues,
tumor spheroids, and stem cell organoids (40). Microfluidic laminar flow is another simple way
to control the spatial distribution of cells in 2D or 3D, often by patterning parallel lanes of
cells, gels, and stimuli. Finally, true 3D patterning is now possible as a result of advances in
biomaterials, chemistry, and 3D bioprinting, so that molecules and cells can be patterned on or
within functionalized polymeric scaffolds or matrices for more realistic, tissue-like geometries (41–
45). These patterning tools have been invaluable for evaluating the effect of patch size on blood
coagulation (Figure 3a) (25) and stem cell differentiation (Figure 3c) (27, 31, 46–48). Patterning
can also distinguish the role of cell–cell contacts from that of soluble signaling (28) to help assess
the extent to which transport-mediated signals drive a particular system. For example, in a study
of tumor invasiveness, a patterned coculture of mammary epithelial cells and human mammary
fibroblasts was generated with and without a cell-free lane between them (49), revealing that
the epithelial transition to an invasive phenotype was initiated by diffusible signals but required
cell–cell contact to be completed.

In contrast to building patterned cell cultures, patchy distributions also can be created when
preexisting in vitro cell cultures (50–52) or intact ex vivo tissue slices (Figure 5d) (53–58) are
locally stimulated using spatially resolved microfluidic delivery. Modern microfluidic designs that
stimulate local regions of neuronal cells (59), essentially creating a patch on a subcellular level,
have built on early work by pioneers such as Campenot (60). Delivery of soluble molecules or
proteins to spatially structured cells and tissues has the potential to enable investigation of patchy
switching and related dynamics, as described in the next paragraph.

We note that not all clusters are patches and not all spatial effects are due to the patchy switch-
ing mechanism described here. For example, even if large patches turn the system ON and small
patches do not, a critical question is whether the effect is driven by greater accumulation of dif-
fusible triggers (patchy switching as in Figure 2d) or simply by having a larger quantity of the
activator (not patchy switching). Microfluidic and micropatterning experiments provide the con-
trol needed to tease apart these differences. For example, a microfluidic device was used to deliver
a potassium chloride solution to local regions of murine brain slices, causing the cortical spreading
depressions that simulate a migraine (58). By varying the radius of the delivery region and the
concentration of potassium, the researchers showed that it was the total quantity of potassium, not
the area over which it was spread, that determined whether spreading depressions occurred (61). A
response to a larger quantity of activator is not the same as a response to its spatial distribution and
does not require nonlinear kinetics. The result of this potassium stimulation experiment contrasts
with the patchy switching observed for blood clotting when TF was micropatterned into patches
of varying sizes while holding the total quantity constant (Figure 3a).

Clustering of patches and variations in patch density are other mechanisms that can change the
Da number and induce switching (Figure 3b, i). As patches are brought closer together, diffusion
of triggers from one patch overlaps with diffusion of triggers from nearby patches, and ultimately
closely spaced small patches functionally merge together. On the molecular scale, self-assembly
of signaling molecules on scaffolds (62) is a remarkable example of clustering. Tethering diffusing
enzymes and substrates to a scaffold can raise the effective local concentration substantially; such
clustering can alter propagation of information through signaling pathways (62) and could lead
to switching. Clustering can play a role at the tissue scale as well and can have marked effects on
organ-level function. For example, a link was made recently between clustering-induced patchy
switching and stimulated hair regrowth. Specifically, plucking a few hairs from the back of a
mouse caused robust hair regrowth but only if the hairs were plucked above a threshold density
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(Figure 3d) (63). The effect was mediated by local transport and accumulation of inflammatory
proteins.

The micropatterning techniques described above make it easy to test the effect of clustering in
vitro. For example, in blood coagulation, micropatterning was used to generate clusters of sub-
threshold patches of Bacillus bacteria on an otherwise inert surface. When human blood plasma
was exposed to these surfaces, unclustered patches of Bacillus did not initiate clotting, but clus-
tered patches induced a robust coagulation response (64). These experiments demonstrated that
a bacterial species could initiate the full coagulation cascade via a quorum acting mechanism, and
the work identified a bacterial zinc metalloprotease InhA1 as the activator of human thrombin and
factor Xa. Controlled clustering or localization of cells has also been used to study the complex
effects of autocrine and paracrine signaling, for example, to separate the effects of cell–cell contact
and soluble signaling on the liver-specific function of hepatocyte–stromal cocultures (65) or on
colony formation by murine embryonic stem cells (66).

Tools are also emerging to test the role of spatial distribution and patches in vivo, in the context
of immune responses, the growth of tumors, and the local effects of xenografts or subcutaneous
vaccinations. Microfluidic tools are potentially more invasive than optical probes and need to be
refined to be used deep in tissues in vivo (67, 68). Genetic manipulation can be used to create
patchy distributions by utilizing temporally and spatially specific promoters or by creating chimeric
or mosaic animals—for example, in a chimeric mouse model of amyotrophic lateral sclerosis
(69), although it is not known whether patch size plays a role in this system. In vivo patches of
controlled sizes can be created by microneedles, grafting, ultrasound, insertion of artificial tissue
scaffolds and hydrogels, and local drug delivery systems (3, 70–74). In mouse models of ischemic
injury, for example, local hydrogel-mediated delivery of vascular endothelial growth factor (VEGF)
and insulin-like growth factor-1 (IGF1) in tandem resulted in increased muscle weight. Such
experiments suggest that spatial and temporal control play a key role in revascularization and
regeneration in vivo (71, 75). Numerous other local drug delivery systems are being developed
that could be used to create large patches. The goal of most drug delivery systems is to maintain a
sufficiently high local concentration of a therapeutic drug in the target tissue while using low and
safe total amounts of the drugs; however, these systems could be extended to test the role of patches
in vivo. Light can also be used to create patches in vivo. Laser-induced injury of blood vessels
(76) is used extensively to create patches of damaged vasculature and initiate blood coagulation;
however, this technique has not yet been used to test if patchy switching occurs during initiation
of coagulation in vivo. Dynamically, patches of cells can be created and switching can be induced
in vivo using optogenetics (77), dynamic patterning (36), and possibly the microfluidic tools for
local chemical stimulation described above.

Chemically Controlling Diffusivity

Another method to induce patchy switching is to chemically reduce the diffusivity, D, of triggers
causing them to accumulate locally (Figure 4b, ii). Diffusion of triggers can be restricted by bind-
ing them to or incorporating them into large, low-mobility objects such as proteins, vesicles, and
exosomes (78) or by oligomerization and fibril formation. For example, intracellular binding of
Ca2+ ions to soluble calcium-binding proteins enables local accumulation of Ca2+ and promotes
initiation of global calcium waves (79). Furthermore, binding of trigger molecules to nondiffusing
objects, such as cell surfaces, intracellular scaffolds, or the ECM, further reduces the effective
diffusion coefficient. For example, during coagulation in a damaged blood vessel, activated en-
zymes bind to the area of exposed endothelium and aggregated platelets, which raises their local
concentration and amplifies the cascade (12, 80). In the context of tissue growth and repair as well
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as inflammation, many cytokines, chemokines, and growth factors bind to proteoglycans on cell
surfaces or to components of the ECM, which limits diffusive loss and enables local chemoselec-
tive accumulation despite constant interstitial, vascular, or lymphatic flow (3, 5, 73, 81–83). The
ECM and closely packed cell bodies also reduce diffusivity by decreasing the free volume of the
tissue, increasing tortuosity, and introducing sieving (84). Reduced diffusion through the ECM
is well established for a variety of systems including ischemic injuries (85), brain tissue (86, 87),
tumor microenvironment (84, 88, 89), mucosal linings in the gut and other organs (90), bacterial
biofilms (91), fibrosis on implanted materials (92), and stem cell embryoid bodies (93). In addition
to reducing the diffusion of triggers, binding to the ECM may change their chemical or functional
properties, for example, by protecting chemokines and cytokines from enzymatic degradation or
preventing binding to cellular receptors (1, 94). Modifying the trafficking of molecules into and
out of cells is another biological mechanism for controlling transport and switches and occurs, for
example, by regulating endocytosis (95). Controlled uptake of chemokines, for example, has been
shown to allow cells to create their own chemotactic gradient for self-directed migration (96).

Tools are emerging to manipulate diffusion chemoselectively by altering binding events. Both
the signaling proteins [e.g., chemokines (82, 97, 98)] and the ECM (2, 4, 73, 97, 99) have been
modified in vitro and in vivo, yielding insights into the roles of restricted diffusion. For exam-
ple, mutations in the glycosaminoglycan (GAG)-binding sites of three chemokines, monocyte
chemoattractant protein-1/CCL2, macrophage inflammatory protein-1β/CCL4, and RANTES
(regulated on activation normal T cell expressed and secreted)/CCL5, were designed to prevent
binding of the chemokines to heparan sulfate (82, 98). Although these mutants were chemoat-
tractive in static in vitro conditions, they failed to recruit cells after injection into the peritoneal
cavity in mice, thus confirming that GAG binding is essential for proper spatial localization and
function of these chemokines in vivo. Decreased diffusion can be engineered as well; for example,
TG-VEGF, a VEGF variant with an amino-terminus factor XIIIa substrate sequence, was designed
to bind directly to fibrin in blood clots and fibrin glue tissue sealants, raising the local VEGF con-
centration long enough to enhance angiogenesis (2). To engineer the ECM, proteins or hydrogels
have been designed to present specific binding motifs for soluble factors (73, 100). For example,
a fibrin matrix was engineered to express a chemokine-binding motif, the twelfth–fourteenth
type III repeats of fibronectin (FN III12–14); this matrix slowed diffusive loss of platelet-derived
growth factor-BB and increased tissue growth responses (4). Accumulation of soluble factors is
distinct from presentation of cell-binding motifs such as RGD (arginylglycylaspartic acid); how-
ever, chemokine- and integrin-binding motifs can certainly function synergistically as well (101,
102). The ability of microfluidics to pattern and deliver reagents brings spatial resolution to dif-
fusion experiments. Microfluidics and micropatterning can also be used to pattern ECM proteins
(Figure 6a) (103, 104), inhibitors of binding, or other molecules (e.g., affinity reagents and recep-
tors, and size-selective or chemo-selective matrices) that can help control diffusivity. As described
above, microfluidic tools also enable local delivery of reagents, which can be used to measure diffu-
sion through the ECM or measure transport in even more complex systems such as gap junctions
(105), to provide insights into mechanisms of transport and switching.

Utilizing Confinement

A complementary approach to changing Da to induce patchy switching is restricting diffusion using
geometric constraints, such as physical confinement (Figure 4b, iii). Confinement promotes the
accumulation of secreted molecules and can raise the local concentration of triggers above the
threshold value, inducing switching. Confinement of diffusible triggers is common in nature and
is the basis for vesicles, organelles, cells, and other biological compartments. Experimentally,
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Figure 6
Microfluidic control over confinement and flow near patches. (a) Microfluidic patterning of the extracellular matrix (ECM) using
Matrigel with distinct spatial zones visible by fluorescence (top) and phase contrast imaging (bottom). Panel a adapted from Reference 103
with permission. (b) Confinement of single cells or small groups of Pseudomonas aeruginosa in ∼0.1 pL droplets activated a fluorescent
reporter for the quorum sensing–controlled gene lasB ( green fluorescence). Panel b adapted from Reference 111 with permission.
(c) Partial confinement of motile Vibrio harveyi ( yellow), initially loaded uniformly in a microfluidic maze (white lines) with 100 μm
passages, caused accumulation of cells and activation of quorum sensing (blue luminescence) in partially confined regions of the maze.
Panel c adapted from Reference 120 with permission. (d ) Increased shear of whole blood over patches of collagen and tissue factor (TF)
prevented propagation of a fibrin ( green) and platelet (red ) clot over the middle patch. Panel d adapted from Reference 126 with
permission.

synthetic analogs of these structures include nanoscale lipid structures (106, 107) and microfluidic
femto- to picoliter aqueous droplets or chambers (108–110).

In the past five to ten years, the role of confinement in inducing state changes has been ex-
plored extensively in the context of bacterial quorum sensing. In 2009, microfluidic confine-
ment in picoliter volumes induced quorum sensing in a single cell or a few cells of Pseudomonas
aeruginosa, presumably because of accumulation of autoinducer molecules in the confined volume
(Figure 6b) (111). This finding was later confirmed using other microfluidic strategies to confine
cells of P. aeruginosa (112), Staphylococcus aureus (113), and Vibrio fischeri (114). These systems may
be used to mimic the confinement that may occur during endocytosis of microbes and mimic
the dynamics of intracellular pathogens. In an interesting model of engulfment of Mycobacterium
tuberculosis by macrophages, microfluidic confinement of mycobacteria in small volumes (5 cells in
200 pL, or ∼2× 107 cells/mL) was sufficient to induce antibiotic resistance (115). This effect was
not seen in larger volumes and suggests that a quorum sensing–like mechanism is at work. Full
confinement of mammalian cells could facilitate studies of autocrine and paracrine signaling, but
the duration of confined culture is limited to just a few hours by the damaging effects of nutrient
depletion and the accumulation of cellular waste products (116). Strategies that alternate periods
of full confinement with interludes of media exchange (115) may circumvent these effects and
enable confinement-based studies on mammalian cells.

Partial confinement—when a patch is confined but not in every direction—also restricts dif-
fusion and leads to effective accumulation of signals while reducing the accumulation of waste
products. Natural architectures such as intercellular spaces (117), intestinal crypts (118), or cor-
tical sulci (119) may lead to partial confinement and accumulation of molecules or cells in that
space. Therefore, this approach is well suited to mammalian as well as bacterial in vitro cell cul-
ture. Microfluidics has been used to mimic conditions of geometric partial confinement in quorum
sensing and blood clotting (120–122), showing that state switching can occur even in the pres-
ence of limited diffusion or flow. For example, soft lithography was used to generate maze-like
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microfluidic geometries that were then filled with liquid cultures of motile Vibrio harveyi. The
microbes were initially distributed uniformly, but after 1–3 h they accumulated in the dead ends
of the maze and activated quorum-dependent responses, presumably responding to accumulating
autocrine signals in partially confined regions (Figure 6c) (120). Furthermore, when compressive
stress was used to decrease intercellular space in cultures of endothelial cells, it enhanced autocrine
epidermal growth factor (EGF) signaling and increased EGF receptor activation equivalent to a
10-fold increase in soluble EGF (117). These results show that confinement is especially effec-
tive for activating signaling that incorporates positive feedback loops, including autocatalysis in
blood coagulation, or autocrine EGF signaling and quorum sensing. Partial confinement would
be particularly effective in combination with chemoselective confinement by the ECM, which
would capture triggers such as cytokines or growth factors while letting nutrients and waste pass
through unhindered. Existing patterning tools can be combined with chemistry to decorate the
ECM with binding functionalities (44) or to use the sieving (84) effects of ECM to study the effects
of chemoselective confinement on patchy switching.

Manipulating Flow and Shear

Fluid flow provides another way to induce switching by changing the local concentration of soluble
triggers, by either delivering them to a patch or washing them out (Figure 4b, iv). In solution
or in bulk tissue, flow is best described by the linear flow velocity, V (meters per second). Near
a surface, such as the endothelium, the effectiveness of transport is best described by the shear
rate, γ̇ = V/L (seconds−1), where L is a characteristic length (meters) over which the flow velocity
is changing, such as the radius of a microfluidic channel or blood vessel. Shear rate controls the
dynamics in systems such as blood coagulation (123), and its effects on transport are distinct from
shear-induced mechanical stress that can also induce signaling processes.

How does one know whether diffusion or flow is more important to transporting triggers in
a particular system? The relative contributions of flow and diffusion to transport of a trigger
are quantified by a dimensionless quantity termed the Péclet number: Pe = LV/D. At high Pe
(Pe � 1), flow dominates, whereas at low Pe (Pe � 1), diffusion dominates. However, often the
two work in concert: The combination of flow and diffusion generates gradients, so that the ef-
fect of flow extends beyond where the flow actually is (83). For example, in solid tumors, flow
through vessels delivers oxygen and nutrients that then diffuse to generate regions of proliferating
tissue surrounded by hypoxic and then necrotic tissue (124). A similar mode of transport occurs
within biofilms (91). Hydrostatic pressure from blood flow drives slow interstitial flow (0.1–2 μm/s)
through soft tissues, which redistributes soluble molecules into gradients (83). Incorporating these
flows into tissue-engineered models is essential to recreating biological functions such as chemo-
taxis (81).

Microfluidic techniques are well suited to controlling fluid flow in vitro at the size and volume
scales most relevant to patchy switching and are already being exploited for this purpose (125). For
example, microfluidic tools have been used to test the effects of flow and shear on the initiation
of blood coagulation and platelet activation (Figure 6d). When human whole blood or plasma
flowed through microfluidic channels over surface-patterned patches of TF, the coagulation cas-
cade switched ON only when low shear rates were used (126, 127). Bacterial quorum sensing has
also been tested for its response to flow. In one experiment, 3D picoliter lobster traps were fabri-
cated inside a microchannel by cross-linking the protein bovine serum albumin (BSA) (112), and
P. aeruginosa bearing a fluorescent reporter for quorum sensing was cultured inside the trap. Quo-
rum sensing was then induced simply by lowering the flow rate of media over the trap, indicating
the sensitivity of this behavior to the transport conditions around the colony.

www.annualreviews.org • Tools for Patchy Switching in Biology 345

A
nn

u.
 R

ev
. B

io
ch

em
. 2

01
7.

86
:3

33
-3

56
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
al

if
or

ni
a 

In
st

itu
te

 o
f 

T
ec

hn
ol

og
y 

on
 0

6/
28

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



BI86CH14-Ismagilov ARI 18 May 2017 17:11

Microfluidic flow has also been used to control state switching in mammalian cell cultures,
often by using controlled perfusion to wash out autocrine or paracrine cell-secreted factors. Such
a system was used to probe the mechanism of autocrine signaling by mouse embryonic stem cells
in maintaining a self-renewing state (22). Gentle perfusion over the cells induced a shift away from
self-renewal into an epiblast state, apparently not by simply removing autocrine growth factors
but by removing secreted matrix-remodeling factors such as matrix metalloproteases (22). This
experiment illustrates the impact of both flow and ECM binding in cell fate decisions. Flow has also
been used to control directional heterotypic cell–cell interactions, as has been reviewed previously
(39). Recently, an elegant microfluidic device design combined control over interstitial flow with
control over flow-mediated paracrine signaling; endothelial cells seeded into the device switched
into vessel formation only when paracrine signals were present (128). Combining microfluidics
with biomaterials to control diffusion and flow simultaneously provides an opportunity to mimic
in vitro complex biological gradients (129) and test the effects of slow interstitial flow (130). Tools
to modify the transport of molecules and induce flow are also being developed. For example,
micromotor and self-propelling particles are being developed to actively transport their cargo
in vitro and in vivo. Self-propelling particles have been used to transport triggers of coagulation
against flow and deep into wounds to treat severe hemorrhage in large animals (131). Micromotors
have been used to transport drugs throughout gastric acid in the stomach (132) and to transport
their cargo into target cells (133).

CONCLUSIONS AND OUTLOOK

To Which Biological Systems Might Patchy Switching Apply?

The tools discussed here may provide the greatest insights for biological systems with the hallmark
characteristics of patchy switching—in other words, those that display spatial heterogeneity, are
driven by diffusible signals, show highly nonlinear (e.g., threshold) responses to those signals, and
are influenced by factors that affect mass transport, such as flow, partial confinement, changes in
clustering or patch size, and binding to the ECM. Many systems meet most or all of these criteria.
For example, inflammation is a highly nonlinear process that is driven by the local concentra-
tion of cell-secreted cytokines (134); both the cells and the cytokines are mobile and respond to
diffusion, interstitial flow, clustering and confinement in tight spaces, and binding to the ECM
(135). Cellular decisions in stem cell niches, cancer niches, developmental niches, sites of wound
healing, sites of chronic inflammation, and even bacterial biofilms are similarly dependent on the
spatial distribution of secreted factors that interact with the microenvironment in multiple ways.
Furthermore, many of these systems include positive feedbacks, which could lead to spatial propa-
gation of the switched state (Figure 3a) and also to stabilization of one state against perturbations.
We call this stabilization state imprinting. In niches (e.g., stem cell niches, cancer niches, devel-
opmental niches) in particular, such stabilization could occur from extensive interactions between
the cells and the ECM (20, 21), during which a patch of cells that has undergone a state switch
can modify the surrounding ECM to change its affinity for soluble signals and further stabilize the
state against perturbations, effectively converting a transient switching event to a chronic one.

Case Study: Possible Patchy Switching in the Lesions of Multiple Sclerosis

At first glance, it may seem that real biological systems are much too intricate to map onto the
patchy switching paradigm. Therefore, it is worth examining a case study. To discuss one exam-
ple, we turn to localized inflammation in the demyelinating lesions of multiple sclerosis (MS),
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Figure 7
Lesions and ectopic follicles in multiple sclerosis (MS) are candidates for patchy switching. (a) Focal
demyelinated lesions in the white matter (161) appear consistent with a response to patch size and clustering.
The asterisk indicates the center of the lesion identified by the absence of brown staining for proteolipid
protein, a component of myelin. Panel a adapted from Reference 161, available under the Creative
Commons Non-Commercial 2.0 UK License (http://creativecommons.org/licenses/by-nc/2.0/uk/).
(b) Ectopic B cell follicles located deep inside cortical sulci in secondary progressive MS are consistent with
patchy switching in response to confinement of inflammatory signals. The schematic details the geometry of
a cerebral sulcus, including the three layers of the meninges (dura, arachnoid, and pia mater). Insets:
Immunohistochemistry for B cells (CD20, brown) revealed follicles located inside the sulcus but not at the
external surface of the brain. Panel b adapted from Reference 119 with permission. Abbreviations: GM, gray
matter; WM, white matter.

which appears to satisfy the criteria for patchy switching as well as propagation and imprinting of
the switched state. In the white matter, lesions are often arranged focally around a central vein
or capillary, and active lesions include a radially symmetric influx of activated macrophages and
myelin-specific T cells that are associated with loss of myelin (Figure 7a) and axonal damage
(136). Spatially, these lesions show focal activation and radial propagation, reminiscent of initi-
ation of blood clotting over surface-patterned TF patches (Figure 3a) (25). In the gray matter,
demyelinating lesions are commonly adjacent to cortical sulci, which can contain ectopic B cell
follicles that persist deep inside the sulcus (Figure 7b) (119) and may serve as a confined source of
inflammatory mediators (136). Like other neuroinflammatory diseases, MS lesions may be driven
by nonlinear responses because neurodegeneration and inflammation together drive a positive
feedback loop (137) that propagates and possibly state imprints tissue damage.

We speculate that demyelinating MS lesions may undergo patchy switching in response to large
patch size and clustering (in the white matter), limited diffusion in the inflamed extracellular space,
and confinement of inflammatory signals (for follicles in the sulci). The signals driving the feedback
loop may include the products of myelin degradation, secretion products from activated microglia
and immune cells, and/or matrix components, such as fibrinogen (136, 138, 139). A threshold
may be present as well, set by clearance of these signals and inhibition of immune response
by regulatory systems. Numerous small prereactive clusters of activated microglia, associated
with precipitated fibrin but without accompanying demyelination, have been observed in MS
autopsy tissue (139, 140). If formation of lesions in MS was controlled by patchy switching, these
prereactive lesions could be viewed as subthreshold patches that did not trigger the inflammatory
positive feedback loop (analogous to subthreshold TF patches unable to trigger blood coagulation
in Figure 3a, i). How might these predictions be tested experimentally? De novo recapitulation of
neuroinflammation is beyond the current capabilities of cell patterning and microfluidic devices,
despite exciting developments in the organ-on-a-chip field (141). However, recent advances in
microfluidic culture and local chemical stimulation of intact brain slices (57, 58) could be used to
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test whether patchy switching can drive the onset of local inflammation ex vivo. For example, a
localized pulse of cytokines or myelin degradation products could be delivered to a rodent brain
slice in arrays of focal regions of varying size. The first prediction is that for a given concentration of
trigger, inflammatory monocytes or lymphocytes would be recruited only when the local delivery
regions exceeded a critical size. The second prediction is that recruitment takes place, and the
switch to the inflammatory state would persist and propagate outward.

Outlook on Tools for Testing the Role of Patchy Switching
In Vitro and In Vivo

Knowing that a system of interest is undergoing patchy switching is invaluable because it allows
one to use Da as a unifying framework to predict how switching dynamics may be affected by
changes in the many factors that affect transport rates (Figure 4). Obviously, not all systems that
appear patchy or satisfy the criteria for patchy switching would actually show patchy switching.
For example, if relative transport and reaction rates differ drastically or the threshold is too far
from the resting value, small changes in reaction or transport rates may be insufficient to cross the
critical value of Da. Furthermore, alternative mechanisms (81) such as mechanotransduction (142)
and cell–cell (49, 141) and cell–matrix contacts (142) would in most cases influence the range of
parameters in which patchy switching could occur and, in some cases, would dominate over effects
of diffusible signaling and Da number. Thus, to confirm or disprove patchy switching in each
system of interest, one needs to measure and modulate transport rates and the spatial distribution
of potential trigger molecules using a chemically selective approach. Microfluidic and chemical
tools are essential to accomplish this.

In vitro, some of the microfluidic tools we have discussed in this review are still at the proof-of-
concept stage, and few are sufficiently robust for use by nonexperts, although they are potentially
available through collaboration with microfluidics laboratories. But some microfluidic tools are
now commercially available and are producing biological insights, and other tools are likely to
mature rapidly toward widespread use. We expect the use of these tools to increase as advances are
made in tissue engineering and in other techniques that enable complex processes to be validated
ex vivo and in vitro.

In vivo and ex vivo, additional spatially resolved analytical tools are urgently needed and have
begun to appear recently. For measurements with high spatial, temporal, and chemical resolu-
tion, microsampling techniques combined with off-line analysis (50–52, 143) could be utilized
but are invasive (144). In vivo electrochemistry with probes a few micrometers in diameter can
provide information on electroactive molecules; this technique has been particularly useful in
brain research (145) and may also become useful in immunity research (146). Imaging approaches
are naturally spatially resolved, and confocal and two-photon imaging techniques in live tissue
(147) are becoming increasingly accessible to nonspecialist researchers. Optical imaging, as well
as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and dif-
fusion MRI techniques, can be done noninvasively but require that chemical wash-in, wash-out,
or caged probes be developed for each molecule of interest (148, 149). Genetically encoded probes
for MRI and ultrasound techniques (150, 151) are particularly intriguing for noninvasively mon-
itoring biological processes in vivo. Spatially resolved analysis of RNA and protein expression is
particularly exciting and has been called for recently (152).

Once developed, methods for spatially resolved analysis in vivo will be useful for identifying
niches that chemoselectively accumulate or lose trigger molecules and also for visualizing the ac-
tivity of the cells and remodeling enzymes responsible for creating such niches. Furthermore, such
methods could identify regions of confinement and chemoselective confinement as well as changes
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in local flow, and these methods could be used to measure the size of patches, identify clusters of
patches, and monitor their switching. Such tools could also improve basic understanding of in vivo
transport rates; how they are affected by matrix composition; how they change with inflammation,
stress, disease, aging, and physical activity; and how they affect patchy switching in vivo. Diag-
nostically, such tools could support early detection and monitoring of treatment by identifying
subthreshold, near-threshold, and above-threshold patches and corresponding niches—for exam-
ple, by identifying early fibrinogen deposits in MS or precancerous lesions in sites predisposed to
cancer (20)—or by monitoring sites of chronic inflammation.

Creating patches and controlling rates of transport to control switching in vivo are even more
challenging than analyzing them, but progress has been made in developing tools that can do
so. Creating patches of known sizes could potentially be accomplished by using optogenetic tech-
niques based on model organisms (153) or light-activated probes (154, 155), either of which provide
a resolution of ∼0.2–2 μm depending on tissue thickness and optical conditions. Alternatively,
patches could be created by using focused ultrasound (resolution of a few millimeters) (156), or
the more invasive microfluidic tools (resolution of tens of micrometers to millimeters) (143, 157).
In terms of controlling transport, flow is a powerful factor to control switching, and methods to
control local flow rates of blood, as well as interstitial, cerebrospinal, lymph, and synovial flu-
ids, are still needed. Approaches are also particularly needed for chemoselective local synthesis,
degradation, or modification of ECM, which would provide control over the binding of triggers
to ECM in patches, and would allow one to modify, create, or erase patches and niches. To meet
this need, synthetic biomaterials, delivered to specific spatial areas, could act as niches and provide
control of diffusion in a chemoselective fashion. Their effects could be enhanced further using
partial confinement approaches (e.g., mimicking the ectopic follicles in Figure 7b) to promote
switching. Such approaches could be used to create synthetic preimprinted niches with geometric,
cytokine-binding, and transport properties suitable for initiation and propagation of a desired re-
sponse and have been applied in a few promising models of adaptive immunity (158, 159). Similar
niches are needed to allow controlled initiation of other processes such as neuroinflammation
and wound healing. We speculate that methods for chemoselective control of transport in vivo
also could be applied therapeutically to erase pathological microenvironments (e.g., prereactive
lesions in MS or premetastatic niches in cancer) or create supportive microenvironments (e.g., in
wound healing, tissue regeneration, or vaccination). Overall, the emerging spatially resolved tools,
together with advances in understanding of biological complexity, make this an exciting time to
study and manipulate patchy switching and related biological phenomena in nonlinear networks
that are controlled by the balance of transport and reaction rates.
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