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microbiome
Jacob T. Barlow1†, Gabriela Leite2†, Anna E. Romano3, Rashin Sedighi2, Christine Chang2, Shreya Celly2, Ali Rezaie2,4,
Ruchi Mathur2,5, Mark Pimentel2,4 and Rustem F. Ismagilov1,3*

Abstract

Background: Upper gastrointestinal (GI) disorders and abdominal pain afflict between 12 and 30% of the
worldwide population and research suggests these conditions are linked to the gut microbiome. Although large-
intestine microbiota have been linked to several GI diseases, the microbiota of the human small intestine and its
relation to human disease has been understudied. The small intestine is the major site for immune surveillance in
the gut, and compared with the large intestine, it has greater than 100 times the surface area and a thinner and
more permeable mucus layer.

Results: Using quantitative sequencing, we evaluated total and taxon-specific absolute microbial loads from 250
duodenal-aspirate samples and 21 paired duodenum-saliva samples from participants in the REIMAGINE study. Log-
transformed total microbial loads spanned 5 logs and were normally distributed. Paired saliva-duodenum samples
suggested potential transmission of oral microbes to the duodenum, including organisms from the HACEK group.
Several taxa, including Klebsiella, Escherichia, Enterococcus, and Clostridium, seemed to displace strict anaerobes
common in the duodenum, so we refer to these taxa as disruptors. Disruptor taxa were enriched in samples with
high total microbial loads and in individuals with small intestinal bacterial overgrowth (SIBO). Absolute loads of
disruptors were associated with more severe GI symptoms, highlighting the value of absolute taxon quantification
when studying small-intestine health and function.

Conclusion: This study provides the largest dataset of the absolute abundance of microbiota from the human
duodenum to date. The results reveal a clear relationship between the oral microbiota and the duodenal
microbiota and suggest an association between the absolute abundance of disruptor taxa, SIBO, and the
prevalence of severe GI symptoms.
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Background
Hundreds of studies have linked the human microbiome
to specific diseases. In metabolic diseases or gastrointes-
tinal (GI) disorders (e.g., irritable bowel syndrome [IBS],
Crohn’s disease, malabsorption) that can cause GI symp-
toms, such as pain, bloating, and diarrhea, the small in-
testine instead of the colon may be the primary site of
microbial interactions related to disease. Studies have fo-
cused on stool primarily for its ease of access and the
fact that it has the highest density of microbes out of
any human sample type [1]. The stool microbiome has
been shown to be a good proxy for the large-intestine
microbiome, but is known to differ substantially from
the small-intestine microbiome [2, 3]. Compared with
the large intestine, the small intestine has several physio-
logical differences that indicate its potential relevance
for microbial interactions. The surface area of the small
intestine is greater than 100 times that of the large intes-
tine, underlining its role in nutrient absorption. Add-
itionally, the mucus layer of the small intestine is much
thinner and more diffuse [4], potentially allowing closer
interactions between microbes and the host. Finally, the
small intestine is the main site for intestinal immune
surveillance by lamina propria dendritic cells [5] and
Peyer’s patches [6], contributing to the body’s response
to both commensal and pathogenic microbes.
Although mouse studies have been an insightful proxy

for understanding the large-intestine microbiome of
humans, the coprophagic behavior of mice [7] and many
other animal models results in a substantially different
small-intestine microbiome compared with humans [8].
For example, the total microbial load of the human small
intestine is generally thought to be low, around 102–106

CFU/mL [1], whereas microbial loads in laboratory mice
are nearly 109 CFU/mL [8, 9]. In humans, culturable
levels above 103–105 CFU/mL from duodenal aspirates
are used as the clinical determination of small intestinal
bacterial overgrowth (SIBO) [10]. SIBO has been shown
to correlate with IBS and GI symptoms such as bloating,
constipation, and diarrhea [11, 12]. Physiologically, SIBO
has also been linked to slow intestinal transit [13], higher
body mass index (BMI) [14], and reduced stomach-acid
levels [15]. Standard-of-care treatments for SIBO often
include antibiotics and diets designed to reduce the
amount of rapidly fermentable products in the small in-
testine [16]. However, reoccurrence of symptoms after
antibiotics is common and adherence to strict diets is
often difficult for patients [17]. Only recently has a con-
nection between the relative abundance of specific mi-
crobial taxa, generally from the Enterobacteriaceae
family, and SIBO begun to be uncovered [18].
The difficult nature of sampling most of the gastro-

intestinal tract has resulted in a limited number of stud-
ies analyzing the microbial composition of the human

small intestine. Several studies have relied on sam-
pling from ileostomy bags [19, 20], but such sampling
will not be fully representative of the small-intestine
microbiome [21]. More recent studies sample directly
from the intact small intestine through an endoscopic
procedure and have begun to unravel unique relation-
ships between small-intestine microbes and disease
[18, 22–25]. An added challenge when quantifying in-
dividual microbial taxa from samples of low total
microbial biomass is that it can be difficult to distin-
guish true small-intestine microbes from contamin-
ation (e.g., from the oral cavity while sampling or
from reagents during sample processing). Additionally,
the wide range of total microbial loads in the small
intestine across individuals highlights the value of
using absolute rather than relative microbial loads
when investigating potential associations between
small-intestine microbes and physiological factors [9,
26, 27].
In this study, we selected a cohort of 250 individuals

from the REIMAGINE study [3] to assess the absolute
microbial loads in the human duodenum and their po-
tential relationship with factors related to health and dis-
ease. We also surveyed the oral microbiome in a subset
of 21 individuals from this cohort to understand the re-
lationship between microbial taxa at these two body
sites. We utilized our recently developed digital PCR an-
chored 16S rRNA gene amplicon sequencing method to
provide absolute taxon abundances and filter out con-
taminants in samples with low microbial abundance [9].
We also used our optimized sample-collection proced-
ure with a custom double lumen sterile closed catheter
system and optimized processing steps to minimize oral,
gastric and dead microbial contamination [28]. We hy-
pothesized that by capturing the absolute microbial
abundances of the human duodenal and oral micro-
biome we would be able to better understand the
makeup of the human duodenal microbiome, improve
the understanding of the underlying community struc-
ture of SIBO, and determine how microbial load and
composition correlate with upper GI symptoms.

Results
We studied the microbiome of the duodenum and its
potential relationship with health and disease in a cohort
of 250 patients enrolled in the REIMAGINE study at
Cedars-Sinai Medical Center. All patients undergoing
esophagogastroduodenoscopy (EGD) without colonos-
copy preparation as standard of care were eligible to en-
roll, resulting in patients with a wide range of GI
conditions. We grouped the reason for endoscopy into
11 broad categories (Table S1). The most common (45%
of the patient population) reasons for endoscopy were to
rule out cancer/polyps and GERD/dyspepsia workup. No
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healthy controls are currently approved to be included
in the study due to the risks associated with the EGD
procedure. Summary statistics for patient demographic
data and selected metadata categories from the enroll-
ment questionnaire are included in Table S1.

Total microbial load of the duodenum across patients
with GI symptoms is log-normally distributed
A digital PCR-based determination of total microbial
load [9, 29] from 250 human duodenal aspirates revealed
samples that spanned loads from our detection limit of
~ 5 × 103 rRNA gene copies/mL up to nearly 109 cop-
ies/mL. The overall distribution of total loads was log-
normal with mean = 6.13 Log10 copies/mL and standard
deviation = 1.12 Log10 copies/mL (Fig. 1A, B). A
quantile-quantile (QQ) plot was constructed to compare
the sample distribution to a log-normal distribution (Fig.
1B). Data from our samples aligning with the y = x line
on a QQ-plot indicate a high similarity between the
sample distribution and a theoretical log-normal distri-
bution [32]. Neither age nor gender significantly corre-
lated with total microbial load (Fig. S1). Total microbial
load also did not correlate with patient reported intake
of probiotics supplements or yogurts, smoking, or usage
of proton pump inhibitors (Fig. S2, Table S2). Current
antibiotic usage appeared to lower the average total

microbial load, but antibiotic usage in the previous 6
months had no impact (Fig. S2, Table S2).
Digital PCR anchored 16S rRNA gene amplicon se-

quencing [9] (hereafter quantitative sequencing) pro-
vided absolute taxon abundances in each sample and a
statistical framework for differentiation between real and
contaminant taxa (Methods). We first compared the cul-
ture counts from aerobic (MacConkey agar) and anaer-
obic (blood agar) plates to the total load of microbes
expected to grow on these plates (Fig. S3). For aerobic
plating, we observed a bimodal distribution of combined
Escherichia-Shigella, Enterobacteriaceae, Enterococcus,
and Aeromonas bacterial load from quantitative sequen-
cing and culture and a high correlation between the two
measurements (Spearman, 0.61, P < 0.001, N = 244). For
anaerobic plating, we observed lower concordance
(Spearman, 0.35, P < 0.001, N = 244) between quantita-
tive sequencing and culture. This discrepancy could re-
flect the difficulty in culturing many intestinal microbes
[33], especially anaerobes that are initially collected and
processed in aerobic environments.
Next, we analyzed the log-transformed absolute-

abundance distributions for the most prevalent genera in
our dataset (Fig. 1C). We define prevalence as a taxon’s
frequency of occurrence in our dataset. Streptococcus
was present in all 250 samples and followed an approxi-
mately log-normal distribution with a mean load that

Fig. 1 Microbial load distribution across 250 human duodenal aspirate samples. A Histogram of the total microbial load in 250 duodenal aspirate
samples overlaid with a kernel-density estimate. B Quantile-quantile plot comparing the sample distribution of the log10-transformed total microbial
load in duodenal aspirate samples to a normal distribution. C Kernel-density estimate plots showing the absolute abundance distribution for the taxa
with greater than 50% prevalence in duodenal aspirates. Prevalence (defined as a taxon’s frequency of occurrence in our dataset) and number of
samples with each genus are labeled next to the distribution. A legend indicates strict anaerobes (red line through O2) and the location each genus is
commonly found (saliva and/or stool) [30, 31]. Classification of taxa as common in stool or saliva was determined by prevalence of ≥ 50% (stool data
are not included in this study) in the 16 participants for whom we had paired samples
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was half an order of magnitude below that of the mean
total microbial load and an equal standard deviation.
Other genera showed wide-ranging distributions that de-
viated from normality. For example, Porphyromonas ap-
pears bimodal with two local maxima whereas
Haemophilus exhibits a long tail towards higher micro-
bial loads. The 23 most prevalent genera in this study
are also commonly found in the oral microbiota [30]. A
subset of these genera (Streptococcus, Veillonella, Prevo-
tella 7, Haemophilus) are also commonly found in stool
samples, indicating possible survival of these genera
throughout the entire GI tract [31]. The majority of
prevalent genera are either strict or facultative anaer-
obes, indicating that parts of the duodenal environment
are likely anoxic in this patient population.

Direct transmission of microbes from saliva to duodenum
To investigate whether many of the taxa found in the
duodenum originated from the oral cavity we analyzed a
subset of 21 patients for whom we had paired saliva and
duodenum samples that were collected during the same
hospital visit. Digital PCR revealed that the total micro-
bial load in saliva was roughly 2.5 orders of magnitude
higher than the total load in the duodenum (Kruskal-
Wallis, P < 0.001).
Further, the range in saliva total loads was 3 orders of

magnitude smaller than the range in total loads of the
duodenum samples (Fig. 2A). No significant correlation
was observed between the total microbial loads in paired
saliva and duodenum samples (Fig. 2B). In this study, all
samples were collected with a custom double-sheathed
catheter via endoscope (see “Methods” section) that moves
beyond the outer sheath before aspirating duodenal fluid.
This custom catheter should limit oral microbiota con-
tamination of the duodenum during the procedure. Add-
itionally, the optimized sample-processing protocol (see
“Methods” section) should eliminate extracellular DNA
from swallowed dead bacteria.
To evaluate the direct transmission of microbes from

saliva to duodenum, we compared the shared taxa be-
tween paired (same patient) and randomly paired sam-
ples from the same dataset. On average, 89% (± 6% S.D.)
of the taxa in the duodenum were also found in the
paired saliva sample, whereas only 66% (± 9% S.D.) were
found in the average of all non-paired comparisons (Fig.
2C, Kruskal-Wallis, P < 0.001), suggesting direct trans-
mission of oral taxa to the duodenum. We then looked
for genera that were proportionally enriched in either
saliva or duodenum samples. Campylobacter was present
in 21/21 saliva samples but only 10/21 duodenum sam-
ples. The absence of Campylobacter in about half of the
paired duodenum samples indicates the oral cavity may
be the preferred niche of Campylobacter or that Cam-
pylobacter has a high sensitivity to the antibacterial

properties of the stomach and small intestine [34] (Fig.
2D). In contrast, an undefined species of Streptococcus
was only found in duodenum samples (6/21) (Fig. 2D).
A breakdown of the difference between duodenal and
saliva abundance of all taxa is provided in Table S3.
These differences in the relative abundance of specific
taxa of microbes between paired saliva and duodenum
samples also provide evidence against oral contamin-
ation in the duodenal samples.

Taxa co-correlations reveal disruptor taxa
We assumed that the taxa with the highest absolute abun-
dance would have the highest potential for impacting the
host. Thus, we began by analyzing the relationships between
the top 20 most abundant genera. A co-correlation heatmap
of these taxa revealed several distinct motifs (Fig. 3A): (1)
taxa whose absolute loads had a high correlation with total
load, (2) taxa whose absolute loads had a higher co-
correlation with another taxon’s absolute load than with total
microbial load, (3) taxa with a mutually exclusive relationship
with almost all other abundant taxa. Examples of the first
motif are in the first column/row of the co-correlation heat-
map in Fig. 3A. Correlation with total load was often an indi-
cator of a prevalent taxon because the variance in total
microbial load was larger than the variance in relative abun-
dance. When two taxa have a higher co-correlation with each
other than with total load (motif 2), it potentially indicates
these taxa share preferred environmental factors or directly
cooperate. One group of these co-correlating taxa that in-
cluded several Prevotella species and a species of Porphyro-
monas matches a known shared metabolic niche in the oral
cavity [35, 36] (Table S4).
Several genera stood out as having no significant cor-

relation with almost all other abundant taxa (motif 3):
Enterobacteriaceae, Escherichia-Shigella, Clostridium
sensu stricto 1, and Lactobacillus (Fig. 3A). For clarifica-
tion, throughout the manuscript our references to En-
terobacteriaceae and Escherichia-Shigella refer to unique
sequence variants from the Enterobacteriaceae family,
but only Escherichia-Shigella could be classified at the
genus level. Based on evidence from a previous study
[18] using the REIMAGINE cohort that found Klebsiella
in several samples, we decided to measure the abun-
dance of Klebsiella via qPCR in all samples containing a
high abundance (at least 105 16S rRNA gene copies/mL)
of Enterobacteriaceae. We found that the majority (16/
22) of the samples with a high abundance of Enterobac-
teriaceae contained Klebsiella (Fig. S4A). Furthermore,
in the samples containing Klebsiella, there was a high
correlation (Pearson, 0.88, P < 0.001) between Klebsiella
load and Enterobacteriaceae load (Fig. S4B). These taxa
appeared to disrupt the commonly observed microbial
structure (i.e., the prevalent taxa that generally co-
correlate with one another) of the duodenal microbiome.
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This pattern of mutual exclusivity can be represented al-
gorithmically by sorting all taxa by the difference be-
tween their maximum abundance and their mean
abundance. Practically, this means that these disruptors
are relatively rare (i.e., present in a small fraction of sam-
ples), but when they are present they usually dominate,
excluding other common taxa. A clustered heatmap of
the top 16 taxa as ranked by the difference in their max-
imum and mean abundances reveals two taxonomic sig-
natures (Fig. 3B). The first signature in the top left of
the heatmap contained the mutually-exclusive taxa from
the co-correlation heatmap, along with Enterococcus,

Romboutsia, Aeromonas, and Bacteroides. The second
signature contained taxa that were generally found in
lower abundance, many of which are from the HACEK
(Haemophilus, Aggregatibacter, Cardiobacterium, Eike-
nella, Kingella) group of organisms associated with in-
fective endocarditis [34]. However, the second group
also clustered with more common taxa in this dataset,
such as Prevotella and Fusobacterium. Thus, we initially
labelled all eight of the taxa in the first taxonomic signa-
ture as “disruptors” (Fig. 3B, bolded taxa) because their
presence appeared to be mutually exclusive with many
other common taxa.

Fig. 2 Relationship between saliva and duodenal aspirate microbiomes. A Total microbial load of 21 paired duodenal aspirate and saliva samples. B No
significant correlation between the total microbial load of 21 paired duodenal aspirate and saliva samples. C Percentage of taxa in duodenal aspirate samples
also present in paired (same patient) vs the average of all non-paired saliva samples (Kruskal-Wallis, P < 0.001). D Volcano plot showing the ratio of relative
abundances of species in duodenum vs saliva samples. The red dashed line indicates a significance threshold at q = 0.1 (Kruskal-Wallis with Benjamini-
Hochberg correction). Undefined Streptococcus sp. classified as S. pneumoniae with 80% confidence and one base pair mismatch to common Streptococcus
taxon found in all samples
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Fig. 3 Co-correlations reveal which taxa co-occur in high abundance and which can be considered disruptor taxa. A Co-correlation matrix of the
top 20 most abundant genera and total microbial load. Only significant correlations (q < 0.1, Benjamini–Hochberg correction) are shown. Color of
each marker is determined by the sign of the Spearman’s correlation coefficient and size of each marker is determined by the magnitude of the
coefficient. Disruptor taxa labels are bolded. B Clustered co-correlation matrix of the top 16 genera ranked by the difference between their
maximum abundance and mean abundance. Two common genera in the dataset are shown at the bottom for reference. The color of each
square indicates the Spearman correlation coefficient from negative (blue) to positive (red). Disruptor taxa labels are bolded. Taxa with known
relevance to human health are indicated. Enterobacteriaceae and Escherichia-Shigella are unique sequence variants from the Enterobacteriaceae
family but only Escherichia-Shigella could be classified at the genus level. HAI=hospital acquired infection; IBS, irritable bowel syndrome; IBD,
inflammatory bowel disease; HACEK, Haemophilus, Aggregatibacter, Cardiobacterium, Eikenella, Kingella
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Aerobic disruptor taxa displace strict anaerobes and
decrease diversity
After performing the co-correlation analysis, we ran a
principal component analysis (PCA) on the absolute
taxon abundances to investigate the drivers of variance
in the dataset (Fig. 4A). Total loads spanned 5 orders of
magnitude, accounting for most of the variance. Total
load cleanly separated samples along the PC1 axis. The
second most explanatory axis, PC2, strongly correlated
with the Shannon diversity index of samples (Spearman,
0.74, P < 0.001, N = 250). Ranked feature loadings for
PC2 (Fig. 4B) indicated that many of the disruptor taxa
(dark blue) are the main drivers of separation in the
positive direction of PC2 whereas the five taxa driving
most of the separation in the negative direction (light
blue) of PC2 consisted of four strict anaerobes (Porphyr-
omonas, Leptotrichia, Prevotella, Prevotella 7) and one
obligate aerobe (Neisseria). It should be noted that many
more taxa were strongly associated with the negative dir-
ection of PC2 than the positive direction. This separ-
ation matches well with the mutual exclusivity seen
between the disruptor taxa and other organisms in the
co-correlation analysis. The two disruptor taxa with the
highest loads are aerobic pathogens from the Enterobac-
teriaceae family and the taxa most associated with the
negative direction of PC2 were strict anaerobes, so we

next took a closer look at the composition of strict vs
facultative anaerobes in each sample. We found a nearly
1:1 correlation between the strict and facultative anaer-
obe loads across all samples (Fig. 4C). Additionally, the
fraction of strict anaerobes in a sample was strongly cor-
related (Pearson, 0.71, P < 0.001, N = 250) with Shannon
diversity (Fig. 4D), indicating that the disruptor taxa ap-
pear to be mutually exclusive with strict anaerobes and
the “bloom” of absolute abundance of disruptors de-
creases Shannon diversity. Furthermore, in half of the
samples containing the two most common disruptor
taxa (Enterobacteriaceae and Escherichia-Shigella), the
total microbial loads were greater than 107 16S rRNA
gene copies/mL, indicating a clear enrichment of dis-
ruptor taxa in samples with higher than average total
microbial loads (Fig. 4E). This signature of higher than
average total microbial loads and mutual exclusivity with
other microbes has been observed in some pathogenic
microbial species [37, 38].

Absolute load of disruptor taxa correlates with SIBO and
GI symptoms
To determine whether disruptor taxa are associated with
disease or GI symptoms we began by looking at patients
with and without SIBO (SIBO classification was made
based on aerobic culture results, ≥ 103 CFU/mL of

Fig. 4 Strict anaerobes and disruptor taxa control diversity. A PCA plot of absolute microbial abundances at the genus level with the top two
correlated metadata variables overlaid. B Feature loadings for principal component 2. Top five value-ranked genera in each direction (positive and
negative) are highlighted and labeled. C Correlation between the strict anaerobic microbial load and facultative anaerobic microbial load. D
Relationship between the percentage abundance of strict anaerobes and Shannon diversity index. E Empiric cumulative distribution function
(ECDF) plot for Enterobacteriaceae (N = 33), Escherichia-Shigella (N = 24), Campylobacter (N = 59), Lactobacillus (N = 42), and the common taxa
Prevotella (N = 104)
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duodenal aspirate [10]). Coloring the PCA plot by SIBO
classification indicates a clear enrichment of patients
with SIBO in the positive direction of the disruptor taxa
axis (Fig. 5A). We observed slightly but not significantly
higher total microbial loads in samples from patients

with SIBO vs without SIBO (Fig. 5B). However, compar-
ing the absolute abundance of specific taxa between the
SIBO and non-SIBO samples by Kruskal-Wallis showed
that the three taxa whose abundances differed the most
between SIBO and non-SIBO (Enterobacteriaceae,

Fig. 5 Disruptor species are dominant in SIBO samples and correlate with GI symptoms and the inflammatory cytokine IL8. A Principal
component analysis (PCA) of absolute microbial abundances at the genus level. Colors indicate non-SIBO (grey) or SIBO (orange) participants as
determined by culture. “X” markers indicate samples from non-SIBO participants that contained Lactobacillus. The PC1 axis correlates with total
load and the PC2 axis correlates with the abundance of disruptor taxa. B Histogram with overlaid kernel-density estimate of the total microbial
loads in samples from SIBO and non-SIBO participants. C Volcano plot indicating the taxa that differed between SIBO and non-SIBO samples. The
red dashed line indicates the significance threshold at q = 0.01. D Correlation between PC2 (disruptor axis) and patient-reported symptom scores
(on a 0–100 scale). The red dashed line represents significance threshold at q = 0.05. E Correlation between PC2 and patient serum cytokine
levels. The red dashed lines represent the significance thresholds at q = 0.05. F Boxplot indicating increasing average total microbial load with
increasing number of disruptor taxa with loads greater than 104 rRNA gene copies/mL (not including Lactobacillus). A significant difference
between total load in samples with zero disruptor taxa and total load in samples with at least 1 disruptor taxa was observed (P < 0.001). G
Percentage of samples from patients with either 0 symptoms or 5–6 symptoms (out of 6 categories) for individuals with varying loads of
disruptor taxa (not including Lactobacillus)
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Escherichia-Shigella, and a Clostridium which, based on
the V4 region of the 16S rRNA gene, was classified as
Clostridium perfringens) were also the three most com-
mon disruptor taxa in all samples (Fig. 5C). This enrich-
ment of disruptor taxa, but not total microbial load, in
SIBO samples indicates that overgrowth of specific taxa
drives the current clinical classification of SIBO. Add-
itionally, using disruptor taxa load as the criterion for
SIBO classification agreed well (80%) with the classifica-
tion by the gold-standard method, aerobic aspirate cul-
ture (Fig. S5). Lactobacillus abundance was similar in
SIBO and non-SIBO samples (Fig. 5C) even though it
co-correlated with many of the disruptor taxa (Fig. 3B).
Most of the non-SIBO samples that clustered with SIBO
samples on the upper part of the PC plot contained
Lactobacillus (Fig. 5A). Lactobacillus does not grow on
the aerobic (MacConkey agar) plates used for SIBO clas-
sification, which could explain why these samples cluster
together by sequencing but are not classified as SIBO by
culture.
Patient-reported GI symptom scores (on a 0–100

scale) were correlated with the disruptor taxa axis (PC2).
Bloating, incomplete evacuation, and constipation had
the highest correlation with the disruptor taxa axis,
whereas correlations between urgency, excess gas, or
diarrhea and the disruptor taxa axis were much weaker
(Fig. 5D). There was a weak positive correlation between
the disruptor taxa axis and serum interleukin 8 (IL8)
levels (Spearman, 0.24, P < 0.001, N = 232), indicating a
potential neutrophil-related response (Fig. 5E). However,
none of the symptoms or cytokines had a significant cor-
relation with the total load axis (PC1). One taxon, which
based on the V4 region of the 16S rRNA gene was clas-
sified as C. perfringens, was the only one that, when
present in patients, coincided with a significant increase
(Kruskal-Wallis, P = 0.039) in serum IL8 levels (Fig. S6).
However, there were only 9/250 samples with C. perfrin-
gens, limiting our ability to draw conclusions about this
relationship. Although the two disruptor taxa with the
highest absolute abundance (Enterobacteriaceae and
Escherichia-Shigella) were enriched in high total micro-
bial load samples, Lactobacillus did not follow this trend.
Lactobacillus was found in samples with total microbial
loads that were similar to the total loads of samples con-
taining common taxa like Prevotella (Fig. 4E). Addition-
ally, in patients with high disruptor taxa loads (after
excluding Lactobacillus load) the presence of Lactobacil-
lus at greater than 5 × 104 copies/mL negatively corre-
lated with bloating symptoms (Fig. S7). These two facts
led us to believe Lactobacillus likely has a more nuanced
relationship with the host than the other taxa we classi-
fied as disruptors. Thus, we removed Lactobacillus from
our list of disruptor taxa in our analyses of the associ-
ation of disruptors with total load (Fig. 5F) and GI

symptoms (Fig. 5G). When multiple disruptor taxa were
present, there was a significant increase in total micro-
bial load (Kruskal-Wallis, P < 0.001; Fig. 5F).
Patient-reported symptom scores are inherently quali-

tative, so to test whether disruptor taxa loads were cor-
related with more severe GI symptoms, we turned the 0-
100 scores into a binary yes/no variable, representing a
severe symptom, by drawing a threshold at the median
score reported for each symptom (Fig. S8). We then cal-
culated the percentage of patients with zero severe
symptoms and the percentage of patients with many se-
vere symptoms (people reporting severe symptoms in 5–
6 of the 6 symptom categories) as a function of disruptor
taxa loads (Fig. 5G). We made three observations. First,
at higher disruptor loads, patients were more likely to
have more severe GI symptoms. Second, none of the pa-
tients with disruptor loads greater than 107 copies/mL
(N = 10) had zero symptoms whereas 60% of them had
5 or 6 symptoms. Of the patients without disruptor taxa
(N = 153), 23% had zero symptoms and 30% had 5 or 6
symptoms. Disruptor loads may also be higher as a func-
tion of age, all but one of the individuals with disruptor
loads greater than 106 copies/mL (N = 23) were older
than 50 (Fig. S9). The absolute and relative abundances
of disruptor taxa did not correlate (Fig. S10), preventing
the clear connection between abundant symptoms and
high absolute loads of disruptor taxa from being ob-
served when analyzing only relative abundances.

Discussion
In this study, we utilized quantitative sequencing to de-
termine the total and taxon-specific loads from the duo-
denum of 250 patients undergoing EGD as standard of
care. We showed that the total microbial load in the
duodenum of these patients spans 5 orders of magnitude
and follows a log-normal distribution. Paired saliva-
duodenum samples revealed that on average 89% of the
taxa in the duodenum were also present in paired saliva
samples, suggesting potential transmission of taxa from
the oral cavity. Co-correlation analysis of the most abun-
dant taxa revealed a distinct taxonomic motif of “dis-
ruptor” taxa that, when present, dominate over other
taxa. The most common of these disruptor taxa were
aerobic pathogens from the Enterobacteriaceae family
and were negatively correlated with the presence of strict
anaerobes and diversity. In addition to the apparent
community disruption, disruptor taxa were enriched in
many patients classified as having SIBO and high loads
of disruptors correlated with a high prevalence of severe
GI symptoms.

Human vs mouse small-intestine microbiome
Several findings from this study emphasize how different
the small-intestine microbiome is between mice and
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humans. Our previous study revealed that the copropha-
gic nature of mice resulted in total microbial loads span-
ning approximately one order of magnitude from 5 ×
108–5 × 109 16S rRNA gene copies/mL [8] in the small
intestine while our human cohort spanned 5 orders of
magnitude with a median of 106 copies/mL (Fig. S11).
Additionally, neither the most common disruptor family,
Enterobacteriaceae, nor any of the taxa with at least 50%
prevalence in this study were commonly found in our
previous study examining microbial loads in the mouse
small intestine [8]. Instead, in that study we found that
the mouse small intestine was dominated by Lactobacil-
lus and, as a result of coprophagy, several stool microbes
[8]. The total microbial load of stool is similar between
mice and humans [39] and they both share several com-
mon taxonomic groups [40]. These differences should be
considered when using mice to model human health or
disease impacted by the small intestine.

Value of quantitative analysis
The nearly 5 orders of magnitude spread in total micro-
bial loads in the duodenum of these patients revealed
the value of utilizing an absolute abundance measure-
ment technique when analyzing microbial communities.
Analyzing absolute abundances of individual taxa also
let us filter out likely contaminants using Poisson load-
ing statistics, which is critical for samples with low mi-
crobial abundance, such as those sometimes found in
the human small intestine [41, 42]. The range of total
loads in saliva and in stool each appear to be smaller
than in the duodenum, closer to two orders of magni-
tude, which likely relates to differences in residence
times, nutrient availability, and host defenses at these
two sites compared with the small intestine [39]. An-
other benefit of using absolute rather than relative abun-
dance measurements is the improved accuracy of
correlations between microbes and host phenotype. For
example, the 10 patient samples with the greatest dis-
ruptor loads had the highest prevalence of severe GI
symptoms, but these samples had relative abundances of
disruptor taxa that ranged from 8 to 97%. This wide
range of relative abundances made samples with high
disruptor loads indistinguishable from samples with
intermediate disruptor loads when analyzing relative
abundances.

Microbial connection between oral cavity and small
intestine
The majority (89%) of identified microbial taxa in the
paired duodenum samples were also present in the
paired saliva samples. Our data supports the hypothesis
of oral-duodenal transmission of microbes but a larger
paired study utilizing shotgun metagenomic sequencing
techniques would provide stronger evidence for this

claim. Survival of microbes after ingestion is likely
dependent on many host factors, including stomach-acid
levels, bile secretions, antimicrobial-peptide production,
and GI motility. The bimodal taxon abundance distribu-
tions (Fig. 1C) observed for some taxa, including Prevo-
tella, may indicate two subsets of patients with distinct
stomach and/or duodenal environments that allow for
differential abundance of specific taxa. For example,
Campylobacter concisus, one of the most common oral
Campylobacter species, is known to be sensitive to both
stomach and bile acids [34]. Therefore, one could
hypothesize that if a patient had low levels of stomach
or bile acids some C. concisus may survive ingestion.
Low-acid conditions could also allow many other bac-
teria to survive transit to the duodenum, resulting in
higher total microbial loads in the small intestine. We
suspect we observed something similar in our samples;
the Campylobacter genus was only found in samples
with greater than average total microbial loads (Fig. 4E).
However, we did not observe a relationship between
total microbial loads in the duodenum and the patients’
use of proton pump inhibitors (PPI), which are known
to reduce acid production. PPI impact on survival of mi-
crobes between the oral cavity and duodenum may be
dependent on how recently the PPI was taken, however
this information was not collected from patients in the
REIMAGINE study. A conclusive comparison of the
relative importance of various factors affecting bacterial
survival in the duodenum would require additional in-
formation on small-intestine secretions of bile acids and
antimicrobial peptides in these patients.
Several common oral microbes have been implicated

in GI diseases when present in stool [30, 43]. A high
microbial load in the small intestine could increase
the likelihood of these microbes surviving all the way
down the GI tract. The shared taxa between the small
intestine and oral microbiota in our paired saliva-
duodenum samples provides evidence that blooms of
opportunistic pathogens in the mouth could also lead
to colonization in the SI [30]. In this study, only 1 of
the 21 paired duodenum-saliva samples contained dis-
ruptor taxa in the duodenum, but these taxa were not
present in the corresponding saliva sample. Several
Enterobacteriaceae species have been identified in oral
samples [44] but usually at a low frequency in healthy
populations. Many Enterobacteriaceae species are in-
troduced into the gut from contaminated food and
water sources [45] which would likely result in only
transient oral residence. However, persistent oral En-
terobacteriaceae species have been linked to the use
of dentures and the presence of periodontal disease
[46]. All the taxa we classified as disruptors in this
study are more frequently found in stool than in the
small intestine or oral cavity [30, 31]. Further studies
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should be performed to determine the source of dis-
ruptor taxa in the upper GI tract.
A number of taxonomic groups we identified in the

duodenum have members known to be opportunistic
pathogens. Beyond disruptor taxa, several taxa from the
HACEK group of organisms [47] associated with infect-
ive endocarditis were found in high abundance in the
duodenum. The route that these and other opportunistic
pathogens take to reach the blood stream is not clear
but our data show that the HACEK organisms are not
limited to the oral cavity. The same traits that allow
them to colonize the mouth and heart (biofilm produc-
tion [48], and general resistance to most host secretions)
likely contribute to their ability to survive in the small
intestine. Additionally, in mouse models, the transmis-
sion of opportunistic pathogens, like Klebsiella, from the
oral cavity to the intestine has been shown to induce in-
flammation [30]. The oral cavity presents a potential res-
ervoir for a wide range of opportunistic pathogens that
have been linked to GI disorders.

Potential relationship between oxygen and disruptor taxa
Several colonic GI disorders are linked to increased oxy-
gen levels in the lumen resulting from decreased epithe-
lial integrity and inflammation [49]. However, the
barrier properties of the small intestine, an absorptive
organ, are different from those of the colon. To our
knowledge, shifts in absolute abundance of microbes
capable of aerobic respiration and anaerobes have not
been quantitatively studied previously in the human
small intestine. The highly correlated abundance of both
strict and facultative anaerobes that we observed could
be a function of the oxygen gradients in the gut from
the epithelial surface to the center of the lumen [50]. In
our study, when diversity collapsed and disruptor taxa
bloomed, the microbial composition shifted away from
strict anaerobes to taxa capable of aerobic respiration.
One clear outlier was a Clostridium classified as C .per-
fringens, which is a strict anaerobe but was highly corre-
lated with the Enterobacteriaceae genera classified as
disruptors. Previous mutualistic relationships between
aerobic and anaerobic species that could help facilitate
colonization have been observed in other studies with
Bacteroides fragilis and either Klebsiella pneumonia or
Escherichia coli [51, 52]. We have previously hypothe-
sized that the surprising coexistence of aerobe-anaerobe
communities can occur in multi-stable systems, and that
these communities can persist due to hysteresis [51]. Al-
though multi-stability and hysteresis have not yet been
documented in the gut microbiome, this phenomenon
could explain the unexpected coexistence and persist-
ence of aerobe-anaerobe communities in the small
intestine.

Disruptor taxa predict SIBO classification and likelihood
of GI symptoms
Clinically, SIBO is classified by culture of duodenal aspi-
rates on aerobic MacConkey agar or measurement of ex-
haled hydrogen and methane after intake of a
fermentable sugar solution [10, 53]. The main disruptor
taxa (Enterobacteriaceae) grow well on MacConkey agar
plates, which may explain the high correlation between
SIBO classification and samples with disruptor taxa. It is
commonly hypothesized that overgrowth of these taxa in
the small intestine is responsible for the gas production
detected during a breath test, and our study further sup-
ports this understanding because we found a correlation
between bloating symptoms (attributable to gas produc-
tion) and disruptor taxa. Future studies should deter-
mine whether individuals with and without high loads of
disruptor taxa yield positive breath test results. Our find-
ings support a strong relationship between overgrowth
of specific disruptor taxa and GI symptoms in subjects
with SIBO. High total microbial load alone in the small
intestine was not associated with GI symptoms usually
observed in subjects with SIBO and other GI conditions
and diseases. Microbial culture is never perfect and will
not capture all taxa associated with SIBO and GI condi-
tions. However, our data suggest that SIBO diagnosis via
microbial culture should focus on quantification of a
specific group of disruptor taxa (Enterobacteriaceae) ra-
ther than total microbial load. Additionally, SIBO diag-
nosis via quantitative sequencing should focus on the
absolute abundance of the seven disruptor taxa identi-
fied in this study.
Lactobacillus seemed to be an exception among the

disruptor taxa in several ways. It commonly co-occurred
with other disruptors; however, it was also present in
many “normal” samples at low abundance. Additionally,
when present at high total loads in the presence of other
disruptor taxa, Lactobacillus load had a negative correl-
ation with bloating score. However, Lactobacillus also
dominated several samples that had no other disruptor
taxa but had high symptom scores. It should also be
noted that individuals taking probiotics (N = 49) did not
have increased prevalence or abundance of Lactobacillus
in the duodenum. Overall, finer taxonomic resolution
may be required to decipher the role of different Lacto-
bacillus species and strains. Their impact on human
health is likely also dependent on the overall microbial
community and host environment.
Although most patients in this study have various GI

complications that could result in abdominal symptoms
independent of a microbial component, patient samples
with high loads of disruptor taxa had a substantially
higher likelihood of having many severe GI symptoms.
However, total microbial load alone did not associate
with GI symptoms. Of the 13 cytokines and chemokines
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measured, only IL8 levels were significantly higher in the
serum of patients with disruptor taxa, potentially indi-
cating an associated local inflammatory process. Future
studies that analyze biopsy transcriptomes would be
needed to determine whether there is an associated host
response, such as immune infiltration or epithelial stress
responses in regions with disruptor taxa and/or high
total microbial loads.
We initiated this study with four expectations, only

one of which was supported by our data. Because mice
are coprophagic and humans are not, we expected to see
a dramatic difference between mouse and human small-
intestine microbiomes. We indeed observed large quan-
titative and qualitative differences between the two.
However, we were more surprised and educated by the
three expectations that were shown to be incorrect. First,
we expected microbial load in the human duodenum to
have a bimodal distribution, with low microbial loads for
non-SIBO patients and much higher load for SIBO pa-
tients, which our findings did not support (Fig. 5B). Sec-
ond, because stomach acid and bile acid secretions
isolate the duodenum from the upper GI tract and be-
cause the unidirectional flow of digesta and the ileocecal
valve isolate the small intestine from the colon, we ex-
pected to find a unique population of microbes in the
duodenum. We were surprised by the extent to which
the oral microbiota appeared to influence the small-
intestine microbiota (Figs. 1C and 2). Third, we expected
to see microbiomes dominated by taxa generally thought
of as commensals like Lactobacillus and Bifidobacter-
ium. We were surprised by the prevalence and abun-
dance of taxa known to be human pathogens (Figs. 1C
and 3B), especially given that the small intestine is an
immune-rich, absorptive organ with a loose mucus
structure that likely permits substantial exposure to mi-
crobial cells and microbial-associated proinflammatory
molecules.

Limitations
An acknowledged limitation of the study is that there
are no healthy controls. All participants had some GI
condition warranting the EGD procedure, which could
bias our dataset and mask our ability to perceive rela-
tionships between microbial abundances and patient
symptoms. New sampling techniques may be required to
reduce the procedural risk involved with sampling
healthy controls. Additionally, all collected samples in
this study were from the lumenal contents of the duode-
num. Distal regions of the small intestine may reveal fur-
ther insights, and mucosal biopsies could be more
indicative of mucosa-associated microbes that interact
closely with the host. Although short amplicon sequen-
cing allowed for more samples to be included in this
study, utilizing shotgun sequencing approaches to reveal

species- and strain-level resolution could provide add-
itional insights, especially with regard to disruptor taxa
and potential transmission of taxa from saliva to the
duodenum. Additionally, DNA-based analyses can only
inform which microbes are in a sample, not whether
they are actively performing a function. RNA-based ana-
lyses, either 16S rRNA or meta-transcriptomics, may
shed additional light on which microbes are resident vs
transient members of the duodenum and what functions
they are performing. Finally, to truly unravel the connec-
tion between oral-to-small intestine microbial transmis-
sion and small-intestine microbe-host interactions, a
more extensive characterization of the host is needed.
Specifically, studies are needed to establish how varia-
tions in stomach acid levels, bile secretions, and GI mo-
tility impact the abundance and composition of small-
intestine microbiota and in turn how the abundance and
composition of small-intestine microbiota impacts im-
mune and epithelial cell responses.

Conclusions
This study, with its acknowledged limitations, provides
the largest dataset of the absolute abundance of micro-
biota from the human duodenum to date. We show a
clear relationship between the human oral microbiota
and that of the duodenum. Furthermore, absolute taxon
abundances in the duodenum reveal a distinct subset of
disruptor taxa, associated with human pathogens, that
appear to displace common strict anaerobes. These same
disruptor taxa are enriched in some individuals classified
with SIBO and the absolute abundance of these dis-
ruptor taxa were associated with more severe GI symp-
toms. Future studies are needed to establish the host
factors that control total microbial load in the duode-
num, the mechanism of appearance and persistence of
disruptor taxa, and how these disruptor taxa interact
with the host.

Methods
Study population and design
The REIMAGINE (Revealing the Entire Intestinal
Microbiota and its Associations with the Genetic, Im-
munologic, and Neuroendocrine Ecosystem) study was
conceived to explore the relationships between the
small-intestine microbial populations and different con-
ditions and diseases [3]. Male and female subjects aged
18–80 years undergoing standard-of-care upper endos-
copy (esophagogastroduodenoscopy, EGD) without
colon preparation were prospectively recruited. All sub-
jects were required to fast (from both solids and liquids,
including water) starting at midnight the night before
the procedure. The study protocol was approved by the
Institutional Review Board (IRB) at Cedars-Sinai Medical
Center, and subjects provided written informed consent
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prior to participation (IRB Protocol: 00035192). Data
presented here represents a retrospective analysis of this
prospectively collected information.

Questionnaires
Prior to EGD, all subjects completed a study question-
naire documenting demographic information and family
and medical history, including GI disease and bowel
symptoms, medication use, use of alcohol and recre-
ational drugs, travel history, and dietary habits and
changes. Subjects also reported any known underlying
conditions, such as GI diseases and disorders, neurologic
disease, hematologic disease, autoimmune disease, kid-
ney disease, heart disease, and cancer. All medical infor-
mation provided by subjects was verified through audits
of medical records. All data were de-identified prior to
analysis.

Blood collection and analysis
After completing the study questionnaire, fasting blood
samples were collected in BD Vacutainer SST tubes
(Becton Dickson, Franklin Lakes, NJ, USA). Levels of cir-
culating pro- and anti-inflammatory cytokines and che-
mokines were analyzed on a Luminex FlexMap 3D
(Luminex Corp., Austin, TX, USA) using a bead-based
multiplex panel that included: GM-CSF, IFNγ, IL10,
IL12P70, IL13, IL1B, IL2, IL4, IL5, IL6, IL8, MCP1, and
TNFα (EMD Millipore Corp., Billerica, MA, USA, cat.
#HCYTOMAG-60K).

Saliva and small-intestine lumenal sample collection
Prior to EGD procedure, saliva was collected in a sterile
5 mL tube. During the EGD procedure, samples of duo-
denal lumenal fluid were procured using a custom-
designed sterile aspiration double-lumen catheter
(Hobbs Medical, Inc.) [28]. Duodenal aspirates (DA)
were collected using a custom-designed sterile inner
catheter which was pushed through a sterile bone wax
cap only after the endoscopist entered the second por-
tion of the duodenum, in order to reduce contamination
from the mouth, esophagus, and stomach. After collec-
tion, samples were immediately placed on ice and trans-
ferred to the laboratory for further analysis.

Aspirate processing and microbial culture
Prior to microbial culture, an equal volume of sterile 6.5
mM dithiothreitol (DTT) prepared with RNase and
DNase PCR-grade sterile water was added at a 1:1 ratio
to each saliva and duodenal aspirate (~ 1 mL) and the
samples were vortexed until fully liquified (~ 30 s) as de-
scribed previously [28]. A 100-μl aliquot of each duo-
denal sample (DA + DTT) was then serially diluted with
900 μL sterile 1× PBS and plated on MacConkey agar
(Becton Dickinson), and on blood agar (Becton

Dickinson). Plates were incubated at 37 °C for 16–18 h
under aerobic (MacConkey) or anaerobic (blood agar)
conditions. Plates without bacterial growth after 18 h
were re-incubated for an additional 18 h. Colony form-
ing units (CFU) were then counted electronically using a
Scan 500 (Interscience, Paris, France). Saliva + DTT and
the remainder of each DA+DTT were centrifuged at
maximum speed (> 13,000 RPM) for 5 min. The super-
natant was removed, and 1 mL of sterile Allprotect re-
agent (Qiagen, Hilden, Germany) was added to the
microbial pellet and then stored at − 80 °C.

DNA isolation
On the day of the DNA isolation, DA pellets were
thawed on ice and processed as described previously
[28]. Microbial DNA was isolated using the MagAttract
PowerSoil DNA KF Kit (Qiagen) on a KingFisher Duo
(Thermo Fisher Scientific, Waltham, MA, USA), and
quantified using Qubit dsDNA high sensitivity and
Qubit dsDNA BR Assay kits (Invitrogen by Thermo
Fisher Scientific) on a Qubit 4 Fluorometer (Invitrogen,
Carlsbad, CA, USA).

16S rRNA gene sequencing
Extracted DNA was amplified, barcoded, and sequenced
as described previously [8, 9, 29]. Briefly, amplification
of the variable 4 (V4) region of the 16S rRNA gene was
performed in 20 μL duplicate reactions with: 8 μL of
2.5× 5Prime Hotstart Mastermix (VWR, Radnor, PA,
USA), 1 μL of 20× Evagreen (VWR), 2 μL each of 5 μM
forward and reverse primers (519F, barcoded 806R, IDT,
CoralVille, IA, USA), 3.5 μL of water, and 3.5 μL of ex-
tracted DNA template. A CFX96 RT-PCR machine (Bio-
Rad Laboratories, Hercules, CA, USA) was used to
monitor amplification reactions and all samples were re-
moved in late exponential phase (~ 10,000 FRU) to
minimize chimera formation and non-specific amplifica-
tion [9, 54, 55]. Amplification was performed under the
following cycling conditions: 94 °C for 3 min, up to 50
cycles of 94 °C for 45 s, 54 °C for 60 s, and 72 °C for 90
s. Several samples were rerun after diluting the template
as they showed non-exponential amplification in the un-
diluted sample, a sign of PCR inhibition. Amplified du-
plicates were pooled together and quantified with KAPA
library quantification kit (Roche, Basel, Switzerland) and
then all samples were pooled at equimolar concentra-
tions with up to 96 samples per library. AMPureXP
beads (Beckman Coulter, Brea, CA, USA) were used to
clean up and concentrate libraries before final library
quantification with a High Sensitivity D1000 Tapestation
Chip (Agilent, Santa Clara, CA, USA). Illumina MiSeq
sequencing was performed with a 2 × 300 bp reagent kit
by Fulgent Genetics (Temple City, CA, USA).
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Raw reads were demultiplexed by Fulgent Genetics.
Demultiplexed forward and reverse reads were processed
with QIIME 2 2020.2 [56]. Loading of sequence data was
performed with the demux plugin followed by quality fil-
tering and denoising with the dada2 plugin [57]. Dada2
trimming parameters were set to the base pair where the
average quality score dropped below thirty. All samples
were rarefied to the lowest read depth present in all
samples (45,386 reads) to decrease biases from varying
sequencing depth between samples [58]. The q2-feature-
classifier [59] was then used to assign taxonomy to
amplicon sequence variants (ASV) with the Silva [60]
132 99% OTUs references. Resulting read count tables
were used for downstream analyses in IPython note-
books (see “Data availability” section).

Klebsiella-specific qPCR
Primers specific for the Klebsiella gltA gene [61] (F: 5′-
CAGGCCGAATATGACGAATTC-3′, R: 5′-CGGGTG
ATCTGCTCATGAA-3′) were first informatically evalu-
ated for coverage across Klebsiella pneumoniae, Klebsi-
ella oxytoca, and Klebsiella aerogenes via Primer-BLAST
[62]. This primer set was found to have a perfect match
against strains from all three tested Klebsiella species.
These primers were also evaluated in the lab for specifi-
city against Escherichia coli. No amplification after 40
cycles was observed with a DNA equivalent of ~ 106 E.
coli cells from the Zymo microbial community DNA
standard (Zymo Research, Irvine, CA, USA). Klebsiella
qPCR was performed in 10 μL reactions with 5 μL of
Ssofast Evagreen Supermix (Bio-Rad Laboraties), 0.5 μL
of 10 μM gltA primers, and 3.5 μL of water. A CFX96
RT-PCR machine (Bio-Rad Laboratories) was used for
amplification with the following cycling conditions: 95
°C for 3 min, 40 cycles of 95 °C for 15 s, 62 °C for 30 s,
and 68 °C for 30 s. Estimated conversion of cycle thresh-
old (Cq) to copies/μL was performed where a Cq of 22.4
equals 1000 copies/uL. Klebsiella load was then calcu-
lated by adjusting for dilutions and normalizing to the
collected sample volume.

Absolute abundance
The total microbial load (bacteria and archaea) of each
sample and the absolute abundance of each taxon in in-
dividual samples was determined as described previously
[9, 29]. Briefly, the Bio-Rad QX200 droplet dPCR system
(Bio-Rad Laboratories) was utilized to measure the 16S
concentration in each sample with the following reaction
components: 1X QX200 EvaGreen Supermix (Bio-Rad),
500 nM forward primer, and 500 nM reverse primer
(519F, 806R) and thermocycling conditions: 95 °C for 5
min, 40 cycles of 95 °C for 30 s, 52 °C for 30 s, and 68
°C for 30 s, followed by a dye stabilization step of 4 °C
for 5 min and 90 °C for 5 min. The final concentration

of 16S rRNA gene copies in each sample was corrected
for dilutions and normalized to the extracted sample
volume.
For each sample, the input-volume-normalized total

microbial load from dPCR was multiplied by each ampli-
con sequence variant’s (ASV) relative abundance to de-
termine the absolute abundance of each ASV. No
correlation between collected sample volume and mea-
sured bacterial load was observed. The average of all
sample volumes for a specific sample type was used for a
few samples (11 duodenum, 10 saliva) that were missing
the starting volume information. A 95% confidence
interval of input volumes for duodenum samples ranged
from 0.18 to 1.93 mL indicating that the estimated input
volume measurement would likely be up to 4× off in ei-
ther direction while the total microbial load ranged
40,000X. Similarly, a 95% confidence interval of input
volumes for saliva samples ranged from 0.36 to 1.28 mL
indicating that the estimated input volume measurement
would likely be up to 2× off in either direction while the
total microbial load ranged 82X.

Poisson quality filtering
Two separate quality-filtering steps based on Poisson
statistics were used to determine the statistical confi-
dence in the measured values. First, a 95% confidence
interval was calculated from the repeated measures of
water blanks. Samples with a total microbial load below
the upper bound of this confidence interval were re-
moved from further analysis.
Second, the limit of detection (LOD) in terms of rela-

tive abundance was determined for each sample. Se-
quencing can be divided into two separate Poisson
sampling steps. First, an aliquot of sample is taken from
the extracted sample and input into the library amplifi-
cation reaction. The LOD of the library amplification
step was determined by multiplying the total microbial
load from dPCR by the input volume into the library
amplification reaction and then finding the relative
abundance corresponding to an input of three copies.
Poisson statistics tells us that the likelihood of sampling
one or more copies with an average input of three copies
is 95%. The second Poisson sampling step in sequencing
arises from the number of reads generated from the
amplified library. The accuracy of the second Poisson
sampling step was previously shown [9] to follow a nega-
tive exponential curve, LOD = 7.115 ∗ read depth−0.115,
between the total read depth and relative abundance at
which 95% confidence of detection is observed. The
minimum of the two described LODs (first determined
per sample by total load, and second by sequencing
depth) was then determined for each sample. For each
sample, the abundance of any ASV with a relative
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abundance below the LOD was set to zero. After filter-
ing, data tables for each taxonomic level were generated.

Data transforms and dimensionality reduction
For PCA, all absolute taxon abundances were log-
transformed. To handle zeros, a pseudo-count of 0.1
reads was added to all taxon relative abundances before
multiplying by each sample’s total microbial load as de-
termined by digital PCR. PCA was performed with the
sklearn.decomposition.PCA function in Python. Ranked
feature loadings for each taxon on a given principal
component were determined by scaling the correspond-
ing eigenvector by the maximum transformed value for
that principal component axis.

Statistical analysis and correlations
Group comparisons (e.g., SIBO vs. no SIBO, saliva vs.
duodenum) were analyzed using the non-parametric
Kruskal-Wallis rank sums tests with Benjamini–Hoch-
berg multiple hypothesis testing correction using SciPy.-
stats Kruskal function and statsmodels.stats.multitest
multipletests function with the fdr_bh option.
Correlation coefficients were either Spearman or Pear-

son and corresponding P values for all correlations were
determined with scipy.stats.spearmanr or scipy.stat-
s.pearsonr functions. Multiple hypothesis testing was
performed for each group of correlations (e.g., taxa co-
correlations, cytokine correlations) separately using the
Benjamini–Hochberg procedure.
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Additional file 1: Figure S1. Total microbial load breakdown by age
(A) and gender (B). Figure S2. Distribution of total microbial load from
subpopulations of patients: taking probiotics (N=49), active smokers (N=
16), taking antibiotics in the past 6 months (N=100), or taking proton
pump inhibitors (PPI, N=106). Figure S3. (A) Scatterplot comparing
aerobic culture load from MacConkey plates to total load from 16S
quantitative sequencing of only the subset of bacteria that are known to
grow on MacConkey plates (Escherichia-Shigella, Enterobacteriaceae,
Enterococcus, and Aeromonas)1. (B) Scatterplot comparing anaerobic
culture load, from blood agar plates, to total load from sequencing of
prevalent bacteria that are expected to grow on blood agar plates
(Prevotella, Streptococcus, Fusobacterium, Escherichia-Shigella)2. Red dashed
line indicates limit of detection of quantitative sequencing method. N =
244. (Six patients in the study were lacking culture data). Figure S4. (A)
Cycle threshold (Cq) values yielded by qPCR with Klebsiella-specific
primers. Duodenum aspirate samples were classified via quantitative
sequencing as containing Enterobacteriaceae (“Entero +”, N=22) or not
containing Enterobacteriaceae (“Entero –”, N=8). (B) Total loads of
Enterobacteriaceae (copies/mL) in duodenum aspirates as a factor of the
approximate Klebsiella load (copies/mL). Enterobacteriaceae measurements
are calculated based on 16S rRNA gene copies (8 copies/genome) and
Klebsiella measurements are calculated based on the citrate synthase
gene (gltA, 1 copy/genome). Figure S5. Receiver operating characteristic
(ROC) curve using absolute loads of seven disruptor taxa
(Enterobacteriaceae, Escherichia-Shigella, Clostridium sensu stricto 1,
Enterococcus, Romboutsia, Aeromonas, Bacteroides) identified in the

sequencing data for SIBO classification. SIBO classification was made
based on gold-standard aerobic culture results, ≥103 CFU/mL of duo-
denal aspirate. Data points are connected by a line between each con-
secutive point. Figure S6. IL8 levels in samples with and without a
Clostridium which, based on the V4 region of the 16S rRNA gene, was
classified as C. perfringens. Figure S7. Relationship between Lactobacillus
load and bloating symptoms in samples containing additional (non-
Lactobacillus) disruptor taxa. Figure S8. Violin plots with data points
overlaid for patient-reported symptom scores. Binary threshold for deter-
mining whether severe symptoms exist was set at the median score re-
ported of each symptom, shown by the red-dashed lines. Figure S9.
Disruptor taxa load separated by patient age: 18-39 (N=40), 40-49 (N=31),
50-59 (N=58), 60-69 (N=67), 70-83 (N=54). Figure S10. Relationship be-
tween absolute abundance (greater than 105 copies/mL) and relative
abundance of disruptor loads (Spearman, P=0.09, not significant). Figure
S11. Comparison of total microbial load between human duodenum,
mouse duodenum, and mouse duodenum where the mice had
coprophagy prevented via tail cup. Mouse data from Bogatyrev et al.
20203. Reported P-values are from Kruskal-Wallis test. Table S1. Summary
statistics for the patient cohort used in this study. All patients are from
the REIMAGINE study4. Table S2. P-values from significance tests (Krus-
kal-Wallis) comparing total microbial load between selected subgroups of
individuals. Significance is indicated with an asterisk. Table S3. Compari-
son between prevalence and relative abundance of all taxa in paired sal-
iva and duodenum samples (N=21 participants). Table S4. Two groups
of taxa (light blue and dark blue) that have stronger co-correlations with
another taxon than with total load. Significance values for all correlations
and co-correlations were P < 0.001.

Additional file 2.
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