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Abstract

The rise in carbapenem-resistant Enterobacteriaceae (CRE) infections has created a global

health emergency, underlining the critical need to develop faster diagnostics to treat swiftly

and correctly. Although rapid pathogen-identification (ID) tests are being developed, gold-

standard antibiotic susceptibility testing (AST) remains unacceptably slow (1–2 d), and inno-

vative approaches for rapid phenotypic ASTs for CREs are urgently needed. Motivated by

this need, in this manuscript we tested the hypothesis that upon treatment with β-lactam

antibiotics, susceptible Enterobacteriaceae isolates would become sufficiently permeabi-

lized, making some of their DNA accessible to added polymerase and primers. Further, we

hypothesized that this accessible DNA would be detectable directly by isothermal amplifica-

tion methods that do not fully lyse bacterial cells. We build on these results to develop the

polymerase-accessibility AST (pol-aAST), a new phenotypic approach for β-lactams, the

major antibiotic class for gram-negative infections. We test isolates of the 3 causative patho-

gens of CRE infections using ceftriaxone (CRO), ertapenem (ETP), and meropenem (MEM)

and demonstrate agreement with gold-standard AST. Importantly, pol-aAST correctly cate-

gorized resistant isolates that are undetectable by current genotypic methods (negative for

β-lactamase genes or lacking predictive genotypes). We also test contrived and clinical

urine samples. We show that the pol-aAST can be performed in 30 min sample-to-answer

using contrived urine samples and has the potential to be performed directly on clinical urine

specimens.

Introduction

The evolution and global spread of carbapenem-resistant Enterobacteriaceae (CRE) threatens

to disrupt modern healthcare systems, which rely heavily on β-lactams (especially
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carbapenems, the last-resort treatments) to control bacterial infections [1–3]. Mortality rates

for CRE infections are as high as 30%–49% [4–6], and thus the global emergence and spread of

CRE infections represents a public health emergency [7–9]. The Centers for Disease Control

and Prevention (CDC) places CRE in its highest (“urgent”) category of antimicrobial-resistant

pathogen threats [8,10], and the World Health Organization (WHO) labels CRE as a critical-

priority pathogen [7]. Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp. compose

the majority of CRE infections and are the most commonly monitored Enterobacteriaceae

[8,11–13].

To halt the further spread of CRE, patients need to be treated swiftly and correctly at the

point of care (POC); however, there is no fast and general method for determining antibiotic

susceptibility [14–16]. The current clinical workflow for treatment of bacterial infections con-

sists of an identification (ID) step followed by an antibiotic susceptibility test (AST). Although

progress is being made to develop faster ID tests [17–19] and a rapid 20-min ID test is on the

horizon [20–22], the gold-standard for AST remains a culture-based workflow using broth or

agar dilution that requires 1 to 2 d and is thus far too slow [23,24]. Because AST results are so

delayed, healthcare providers usually treat empirically, leading to inappropriate prescriptions

and even life-threatening outcomes [25], as well as the further spread of resistance. To improve

treatment and promote antibiotic stewardship, healthcare providers need a rapid phenotypic

AST [26–29].

ASTs are either genotypic or phenotypic. Genotypic tests predict resistance by measuring

the presence of genes known to be involved in resistance. Genotypic tests can be fast [30] but

often have limited clinical utility because they target defined mechanisms of resistance. For

example, rapid genotypic methods to detect gram-negative β-lactamase genes have been devel-

oped [31–34], but these tests only detect one of the many known β-lactamase classes and still

require 30 to 40 min (estimated from described methods). Similarly, the commercial Cepheid

Xpert Carba-R assay (Cepheid, Sunnyvale, CA), which detects 5 β-lactamase gene families, was

shown to detect 50% of resistant isolates and took 88 min [35]. Moreover, although Carba-R is

Food and Drug Administration (FDA) approved, its utility in treatment scenarios is limited

(i.e., negative results are not actionable), so when prescribing antibiotics, it must be used in

conjunction with a phenotypic AST [36,37]. Rapid methods for measuring the activity of spe-

cific β-lactamases also exist [38–42]. However, these tests only detect one mechanism of resis-

tance, and sample-to-answer times have not been reported.

Phenotypic ASTs are ideal because they determine susceptibility directly by exposing the

sample to antibiotics and measuring the target organism’s response. The gold-standard AST

(broth microdilution [23,24]) is a phenotypic test. Most phenotypic tests require the growth of

viable organisms isolated from patient samples, a process that requires days and is thus too

slow for the POC. Innovative, faster phenotypic tests for β-lactams were developed based on in

situ nucleic-acid staining or fluorescence measurements [43–45], flow cytometry [46], micros-

copy [47–49], optical density [50,51], and mass spectrometry [52]. However, the majority of

the currently proposed methods still require 60- to 180-min antibiotic-exposure steps in addi-

tion to the time needed to perform the assay, and no method has emerged that achieves short

(approximately 15 min) antibiotic exposure and short (approximately 15 min) assay time but

does not require excessively complex or delicate instrumentation so the method can be

deployed at the POC.

Rapid phenotypic methods based on quantification of nucleic acids (NAs) have shown

great promise for a rapid POC AST due to the speed, specificity, and robustness of NA detec-

tion [53–58]. There is an additional advantage to using NA quantification as a readout of the

bacterial response to antibiotic: because rapid pathogen ID from clinical samples is commonly

performed via NA analysis, it would likely be easier to integrate an NA-based phenotypic AST
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into a combined ID/AST workflow performed from the same clinical sample. Additionally, the

use of NA-based methods provides molecular specificity towards the target pathogen, which is

important in clinical samples that can contain multiple organisms. For antibiotics that directly

or indirectly impact NA replication on short timescales, we have demonstrated that the quanti-

fication of DNA [59,60] or RNA [61] can be used to rapidly (30 min) and reliably determine

susceptibility to nitrofurantoin and ciprofloxacin. Subsequent efforts have targeted the β-lac-

tam class (the most widely prescribed class of antibiotic [1,2]) using these methods [62]. How-

ever, because β-lactams do not directly impact NA replication on short timescales, this direct

translation of the existing NA-based technique required a 2-h antibiotic exposure, which is not

sufficiently rapid for the POC. For a POC AST to impact management of CRE infections, it

must (i) determine susceptibility to β-lactams, including carbapenems; (ii) be rapid (<30-min

sample-to-answer) [63,64]; and (iii) be phenotypic [26,27]. As discussed subsequently, rapid

pathogen ID technologies are becoming available, and therefore pathogen ID is not the focus

of this work.

Here, we hypothesized that a new NA-based approach could be used to develop a rapid

phenotypic AST for multiple β-lactams. We hypothesized that upon treatment with β-lac-

tam antibiotics, susceptible Enterobacteriaceae isolates would become sufficiently permea-

bilized so some of their DNA would become accessible to added polymerase and primers.

Further, we hypothesized that this accessible DNA would be detectable directly by isother-

mal amplification methods that do not fully lyse bacterial cells. To differentiate between

resistant and susceptible organisms, rather than measuring how total NA concentration is

impacted by antibiotic exposure (as in previous NA-based ASTs), we hypothesized that we

could measure the accessibility of NAs to polymerase following a short antibiotic exposure.

Here, we test these hypotheses and use them to design a new AST method, termed polymer-

ase-accessibility AST (pol-aAST). To validate the method, we performed 82 ASTs using

clinical isolates of 3 major CRE pathogens exposed to each of 3 commonly prescribed β-lac-

tams for gram-negative infections: ceftriaxone (CRO), ertapenem (ETP), and meropenem

(MEM). To further demonstrate that this method has potential to be used clinically in POC-

relevant timescales, we (i) performed timed sample-to-answer experiments using contrived

urine samples to ensure that the whole assay can be performed in <30 min, and (ii) we per-

formed a pilot study on clinical urine samples from patients with urinary tract infections

(UTIs).

Results

The pol-aAST relies on differential accessibility of NAs to polymerases as a result of antibiotic

exposure. In this manuscript, we define differential accessibility to polymerase as a difference

in the measured rate of amplification between control and antibiotic-treated samples. In the

first step of pol-aAST, a single sample is split into control and treated aliquots of equal volume,

and the treated aliquot is exposed to a β-lactam. Antibiotic exposure is a critical step in any

phenotypic AST because phenotypic tests measure the response of bacteria to antibiotics. If

the bacteria in the sample are resistant, we hypothesized that no differences in NA amplifica-

tion would be observed between control and treated aliquots. If the bacteria are susceptible, we

hypothesized that antibiotic treatment would lead to a compromised peptidoglycan cell wall

(Fig 1A) and partial release of NAs (Fig 1B). We hypothesized that both the compromised cell

wall and partial release of NAs would increase the accessibility of NAs to polymerase in a

treated antibiotic-susceptible aliquot. In the second step of pol-aAST, control and treated ali-

quots are exposed to polymerase in amplification conditions (Fig 1C), and the rate of amplifi-

cation is measured.
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To successfully differentiate susceptible and resistant samples, ideal amplification condi-

tions must (i) not fully lyse cells, (ii) enhance alterations (damage) to the cell wall caused by

exposure to β-lactams, and (iii) increase NA release only from antibiotic-damaged cells. The

rate of amplification is dependent on the concentration of polymerase-accessible NA. In sus-

ceptible samples, more NAs are released in the treated aliquot, leading to faster amplification

in susceptible treated aliquots (Fig 1D) relative to the controls. Resistant samples are not

affected by the antibiotic, so control and treated aliquots have similar NA release and time-to-

positive (TTP). In these samples, the low concentration of naturally occurring extracellular

DNA is ultimately amplified, but at a slower rate. Amplification rate in an isothermal amplifi-

cation reaction is quantified by measuring the TTP, the time it takes the reaction fluorescence

to reach a predetermined threshold. We found that using pol-aAST, isolates susceptible to the

β-lactam being tested show increased accessibility of NAs to polymerase, manifesting in an

earlier TTP relative to the control. The TTPs of any two samples, such as the control and

treated aliquots, can be compared to generate a TTP difference (TTPD) value, which can then

be used to determine susceptibility by comparing to a susceptibility threshold. Here, we used

the DNA polymerase Bst 3.0 (New England Biolabs [NEB], Ipswitch, MA) under loop-medi-

ated isothermal amplification (LAMP) conditions.

We hypothesized that the chemical environment in which amplification occurs would sig-

nificantly impact the result of pol-aAST and that—for pol-aAST to differentiate susceptible

and resistant samples—amplification conditions should not be fully lysing. To test this, we per-

formed pol-aAST using LAMP, as well as quantitative PCR (qPCR) (Fig 2). LAMP is per-

formed at a single temperature (70˚C), which we hypothesized would not be fully lysing,

whereas qPCR is a thermocycled amplification technique reaching a maximum temperature of

Fig 1. Overview of the pol-aAST shown for susceptible and resistant samples exposed to β-lactams. (a) Treated aliquots are exposed to a β-lactam. In

susceptible samples, β-lactams compromise cell wall integrity. (b) NAs are released from compromised cells, increasing NA accessibility to polymerase. (c)

Released NAs in the susceptible treated aliquot amplify faster than NAs from intact cells in the control aliquot, resulting in a difference in TTP. No difference in

amplification between control and treated aliquots is observed in resistant samples. (d) TTPD between control and treated aliquots is used to assess

susceptibility. ABX, antibiotic; AST, antibiotic susceptibility testing; gDNA, genomic DNA; NA, nucleic acid; pol-aAST, polymerase-accessibility AST; R,

resistant; RFU, relative fluorescent units; S, susceptible; TTP, time-to-positive; TTPD, time-to-positive difference.

https://doi.org/10.1371/journal.pbio.3000652.g001
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95˚C, which we hypothesized would be fully lysing. Indeed, we observed that pol-aAST was

successful in differentiating susceptible and resistant isolates when performed using LAMP,

but not when performed using qPCR (Fig 2). We tested qPCR with a total of 2 susceptible and

2 resistant isolates, none of which showed a statistically significant difference in quantitation

cycle (Cq) between control and treated samples. When using LAMP, detectable differences

were observed between control and treated aliquots when using isolates susceptible to the tar-

get β-lactam (TTPD = 1.02 min). Additionally, the presence of cells not lysed during LAMP is

evidenced by the shorter TTPs seen when an aliquot of the same sample is lysed using an

extraction buffer prior to performing LAMP (explained in more detail subsequently). These

differences confirm that choice of amplification chemistry is critical to the success of pol-aAST

and are consistent with previous work evaluating thermal lysis [65].

To investigate the mechanism of pol-aAST, we performed experiments to separate free NAs

from NAs contained within structurally intact cells or associated with cell debris. Susceptible

and resistant clinical isolates were exposed to one or more β-lactams in parallel for 15 min,

then filtered through 0.2 μM filters to remove cells from free NAs. NAs in the sample and elu-

ate were then quantified using droplet digital PCR (ddPCR). We observed that following expo-

sure to β-lactams, susceptible isolates treated with β-lactams released a significantly larger

Fig 2. The pol-aAST requires non-lytic amplification conditions. (a–b) Thermal profiles of LAMP and PCR. (c–d)

LAMP and PCR amplification curves for a susceptible E. coli isolate exposed to ETP for 15 min. Blue and black lines

are the average of triplicate samples. Grey lines represent standard deviation of triplicates. A difference in TTP for

control and treated aliquots is observed for susceptible isolates when quantifying NAs using LAMP, but not PCR. Raw

data are provided in S5 Table. AST, antibiotic susceptibility test/testing; Cq, quantitation cycle; ETP, ertapenem;

LAMP, loop-mediated isothermal amplification; NA, nucleic acid; PCR, polymerase chain reaction; pol-aAST,

polymerase-accessibility AST; RFU, relative fluorescent units; TTP, time-to-positive.

https://doi.org/10.1371/journal.pbio.3000652.g002
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percentage of DNA than resistant samples (Fig 3). The amount of DNA released depended on

the antibiotic being tested. Exposure to MEM resulted in an average of 21% of DNA being

released from susceptible isolates, with a slightly smaller average percent (15%) released as a

result of exposure to ETP. Interestingly, susceptible samples only released an average of 6% of

DNA when exposed to CRO, demonstrating that NA release is dependent on choice of antibi-

otic and not, e.g., a universal stress response. These results also demonstrate that the magni-

tude of the effect of a β-lactam on cell wall integrity can be measured and is different

depending on the antibiotic used, even on short exposure timescales.

To validate the pol-aAST method, we first performed 82 ASTs using 12 clinical isolates

of E. coli, 8 clinical isolates of K. pneumoniae, 9 clinical isolates of 2 species of Enterobacter
(E. aerogenes and E. cloacae, collectively “Ebs”), and the β-lactams CRO, ETP, and MEM.

The set included isolates from each genus that were susceptible and isolates that were resis-

tant to each of the 3 antibiotics. In addition to isolates obtained from the UCLA Clinical

Microbiology Laboratory (CML; see Methods), those tested included E. coli and K. pneumo-
niae isolates from the CDC Enterobacteriaceae Carbapenem Breakpoint panel [66], as well

as all available Enterobacter spp. isolates from the same panel. All samples were amplified

using quantitative LAMP, and categorical agreement was compared to gold-standard broth

microdilution AST. Two approaches for determining susceptibility were investigated in all

pol-aASTs performed.

Fig 3. Percentage of DNA released following antibiotic exposure. Two susceptible and two resistant E. coli isolates

were exposed to no antibiotic (control), CRO, ETP, or MEM for 15 min before filtering to separate intact cells from

extracellular DNA. Experiments were performed in triplicate for all isolate/antibiotic combinations. Each point

represents a single experiment; lines represent the average and standard deviation of replicate experiments. Raw data

are provided in S6 Table. ABX, antibiotic; CRO, ceftriaxone; ETP, ertapenem; MEM, meropenem; R, resistant; S,

susceptible.

https://doi.org/10.1371/journal.pbio.3000652.g003
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The first approach we investigated was to compare the difference in TTP values of the con-

trol and treated aliquots in each pol-aAST. This difference was defined as TTPD control to

treated (TTPDCT) (Fig 4A). Using the TTPDCT method, we obtained 100% categorical agree-

ment with gold-standard AST for all antibiotics tested with E. coli (Fig 4B), K. pneumoniae
(Fig 4C), and Ebs (Fig 4D) isolates, even with resistant isolates for which the genotypic tests

fail to correctly predict the resistance phenotype (red points in Fig 4). The values of TTPDCT

were well-separated between susceptible and resistant isolates in all CRE-antibiotic combina-

tions. Note that the threshold values separating TTPDCT of susceptible and resistant isolates

depend on the antibiotic used (e.g., CRO gives a smaller response and therefore requires a

lower threshold), as well as the pathogen tested (e.g., K. pneumoniae gives stronger response

and requires a higher threshold). The area under the curve (AUC) of the receiver operating

characteristic (ROC) curve was 1.00 for all isolates and antibiotics tested. There were no errors

relative to gold-standard AST when determining susceptibility by TTPDCT.

The second approach we investigated was to compare the difference in TTP values of a fully

lysed aliquot and the antibiotic-treated aliquot in each pol-aAST. The fully lysed aliquot was

created by extracting NA from the antibiotic-treated sample using a single-step, LAMP-com-

patible extraction buffer. This difference was defined as TTPD lysed-control to treated

(TTPDLT) (Fig 5A). It is important to note that TTPDLT only requires an antibiotic-treated

sample during the exposure step (the method does not require the use of a no-antibiotic con-

trol during exposure), meaning that the original sample does not have to be split prior to expo-

sure. Again, the thresholds were defined individually for each antibiotic and pathogen. Using

the TTPDLT method, we obtained 100% categorical agreement with gold-standard AST for all

antibiotics tested only with E. coli (Fig 5B) and K. pneumoniae (Fig 5C) isolates, and with resis-

tant isolates for which the genotypic tests fail to correctly predict the resistance phenotype (red

points in Fig 5). When testing Ebs (Fig 5D) isolates, we observed 2 errors in which an isolate

classified as CRO resistant was called susceptible, resulting in an overall categorical agreement

of 88%. Because of these errors, the AUC for Ebs isolates tested with CRO was 0.94. Aside

from these errors, susceptible and resistant isolates were well separated in all cases, with

AUC = 1.000 for all antibiotics tested with E. coli and K. pneumoniae. Although we observed 2

Fig 4. Validation of the pol-aAST method using control and antibiotic-treated aliquots. (a) Example calculation of TTPD between control and treated

aliquots (TTPDCT). The TTP (in minutes) of the control and treated aliquots are used to calculate TTPDCT. (b–d) The pol-aAST results using E. coli (b), K.

pneumoniae (c), and Enterobacter spp. (d) isolates exposed to CRO, ETP, and MEM for 15 min. Red points represent isolates with either no detectable

carbapenemase genes (Ec and Kp isolates) according to a published genotypic assay [67] and commercial assay [68] or no predictive genotype (Ebs isolates)

according to the whole genome sequencing by the CDC [66]. S/R thresholds (dashed lines) were set halfway between the lowest susceptible and the highest

resistant TTPDCT values. Raw data are provided in S3 Table. +ABX, antibiotic-treated; AST, antibiotic susceptibility testing; CDC, Centers for Disease Control

and Prevention; CRO, ceftriaxone; CT, control to treated; ctrl, control; Ebs, E. aerogenes and E. cloacae collectively; Ec, E. coli; ETP, ertapenem; Kp, K.

pneumoniae; MEM, meropenem; pol-aAST, polymerase-accessibility AST; R, resistant; RFU, relative fluorescent units; S, susceptible; TTP, time-to-positive;

TTPD, time-to-positive difference; TTPDCT, TTPD control to treated.

https://doi.org/10.1371/journal.pbio.3000652.g004
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errors, using the TTPDLT metric still gave excellent agreement with gold-standard AST and

required no splitting of the sample prior to exposure.

To demonstrate one of the major differences between pol-aAST, a phenotypic method, and

existing genotypic methods, we challenged the assay with 5 previously characterized isolates

that had either (i) no detectable β-lactamase genes or (ii) lacked any genotypic signature pre-

dictive of β-lactam resistance. We tested 2 E. coli and 2 K. pneumoniae isolates with no detect-

able β-lactamase genes as measured by both a published genotypic assay designed to screen for

Fig 5. Validation of the pol-aAST method using lysed control and antibiotic-treated aliquots. (a) Example calculation of TTPD between the lysed control

and antibiotic-treated aliquots (TTPDLT). The TTP (in minutes) in the lysed control and antibiotic-treated aliquots are used to calculate TTPDLT. (b–d) The

pol-aAST results using E. coli (b), K. pneumoniae (c), and Enterobacter spp. (d) isolates exposed to CRO, ETP, and MEM for 15 min. Red points represent

isolates with either no detectable carbapenemase genes (Ec and Kp isolates) according to a published genotypic assay [67] and commercial assay [68], or no

predictive genotype (Ebs isolates) according to the CDC [66]. S/R thresholds (dashed lines) were set halfway between the lowest susceptible and the highest

resistant TTPDLT values except in the case of Enterobacter spp. treated with CRO (see text). Raw data are provided in S3 Table. +ABX, antibiotic-treated; AST,

antibiotic susceptibility testing; CDC, Centers for Disease Control and Prevention; ctrl, control; CRO, ceftriaxone; Ebs, E. aerogenes and E. cloacae collectively;

Ec, E. coli; ETP, ertapenem; Kp, K. pneumoniae; lc, lysed control; MEM, meropenem; pol-aAST, polymerase-accessibility AST; R, resistant; RFU, relative

fluorescent units; S, susceptible; TTP, time-to-positive; TTPD, time-to-positive difference; TTPDLT, TTPD lysed-control to treated.

https://doi.org/10.1371/journal.pbio.3000652.g005

Fig 6. Timed sample-to-answer pol-aAST using contrived urine samples spiked with either Ec or Kp. (a) Because minimal sample handling is required for

pol-aAST, all 4 contrived urine samples were run in parallel. (b) Urine samples were split into control and antibiotic-treated aliquots and incubated at 37˚C for

13 min. A timer was started immediately after sample splitting. (c) All samples were added to pre-made LAMP mix and run in technical triplicate. (d) Samples

were amplified using LAMP, and the fluorescence of reactions was monitored in real time. Once total fluorescence passed a predetermined threshold

(indicating successful amplification), reactions were stopped and TTP values ported into an automated data-analysis spreadsheet. The timer was stopped as

soon as the spreadsheet gave susceptibility calls. (e) Comparison of susceptibility calls with gold-standard AST categorization. Total assay time was 29.5 min.

Raw data are provided in S3 Table. ABX, antibiotic; AST, antibiotic susceptibility test/testing; cntrl, control; Ec, E. coli; ETP, ertapenem; Kp, K. pneumoniae;
LAMP, loop-mediated isothermal amplification; pol-aAST, polymerase-accessibility AST; R, resistant; RFU, relative fluorescent units; rt, real-time; S,

susceptible; TTP, time-to-positive; TTPD, time-to-positive difference.

https://doi.org/10.1371/journal.pbio.3000652.g006
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6 β-lactamase gene families [67], as well as the Cepheid Xpert Carba-R test (a commercial,

FDA-approved genotypic assay designed to screen for 5 β-lactamase gene families) [68]. These

4 isolates did not test positive in either assay because they lack the genes these assays screen

for, despite being resistant (as determined by gold-standard broth microdilution). These 4

tested isolates were resistant to CRO and ETP, and one isolate from each genus was also resis-

tant to MEM. Additionally, we tested a single resistant Ebs isolate from the CDC Enterobacter-

iaceae Carbapenem Breakpoint Panel (AR-Bank #0007). Whole genome sequencing of this

isolate (performed by the CDC) revealed no known resistance markers [66], meaning that the

mechanism of resistance was uncharacterized. The pol-aAST performed excellently in all

cases, and all 5 isolates were correctly categorized as resistant (Figs 4 and 5, red points).

To investigate the sample-to-answer time of the pol-aAST, we performed timed experi-

ments using contrived urine samples (Fig 6). Sample-to-answer time is a critical metric for any

assay designed to be used at the POC but is often not reported at all, even for methods claiming

to be rapid. In timed experiments, we (i) reduced the exposure time from 15 to 13 min to

ensure that all handling could be performed during the 15 min allocated for exposure and (ii)

used an automated data-analysis spreadsheet to provide a susceptibility call as soon as the

LAMP reactions reached a predetermined threshold (indicating successful amplification). At

the initiation of pol-aAST, a timer was started that ran for the duration of the experiment and

was stopped once a susceptibility call had been made. The susceptibility of 4 isolates to ETP

was tested simultaneously (Fig 6A). The pol-aAST consists of only 3 simple handling steps (Fig

6B–6D), which allowed us to perform pol-aAST in a total time of just 29.5 min, with results in

agreement with gold-standard AST (Fig 6E).

We next ran the pol-aAST on clinical urine samples from patients diagnosed with UTI.

These samples were confirmed to be Enterobacteriaceae-positive UTIs by the UCLA CML,

and the pol-aASTs were run 3 to 5 d after collection. Initial experiments running the pol-aAST

directly on clinical urine samples revealed an insufficient response to antibiotics in some sam-

ples. Because we analyzed urine samples that had been stored in a chemical preservative (see

Methods) for 3 to 5 d after collection, some variation in the response to antibiotics was

expected. However, we wished to test whether the delays in the response were indeed due to

the phenotypic state of bacteria in these archived samples, and not due to the intrinsic biology

of the bacterial strains in these samples. To test, we obtained 25 clinical urine specimens that

exhibited an expected heterogeneity, as indicated by the wide range of urinalysis findings (see

S2 Table): pH ranged from <5 to 8, specific gravities ranged from <1.005 to>1.060 (above

and below the ranges detected in standard urinalysis), and protein, ketone, and bilirubin con-

tents ranged from absent to the maximum measurable by urinalysis. Some samples contained

red blood cells, leukocytes, and squamous epithelial cells. Two of the samples were polymicro-

bial. To ensure a response from bacteria in these specimens, we added a 30-min pre-incuba-

tion step of urine with media and increased the duration of antibiotic exposure to 45 min (see

Methods). We did not optimize these conditions and did not attempt to identify the shortest

possible incubation or exposure time. Eight samples were tested for ampicillin (AMP) suscep-

tibility, and 17 samples were tested for ETP susceptibility. Prior to testing clinical samples

using AMP, we tested 5 E. coli isolates using AMP (S1 Fig). Despite the heterogeneity in the

urine matrix and the likely nutrient-deprived condition of the bacteria in the urine samples,

pol-aAST experiments yielded clean separation between AMP-sensitive and -resistant E. coli.
Additionally, we were able observe a response to ETP in 14 of 17 ETP-sensitive urine samples

tested. Overall, we obtained 100% categorical agreement for determination of AMP suscepti-

bility (4/4 susceptible and 4/4 resistant; Fig 7) and observed a response indicating susceptibility

to ETP in 14 of 17 (82.4%) confirmed-susceptible samples (Fig 7), including the 2
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polymicrobial samples. None of the samples received for testing by the pol-aAST method were

ETP-resistant.

Discussion

The pol-aAST method enables rapid, organism-specific measurement of susceptibility to β-lac-

tams—the most important class of antibiotic for gram-negative infections—thus providing the

critically missing piece needed to develop a POC AST for this global health threat. The genera

of isolates and the β-lactams used in this proof-of-concept study were intentionally chosen—E.

coli, K. pneumoniae, and Ebs—and are responsible for the majority of CRE infections globally

[8,11–13] (in some areas of the US, K. pneumoniae is responsible for up to 90% of CRE infec-

tions [5]). It is for this reason that E. coli, K. pneumoniae, and Ebs together make up the major-

ity of isolates in the CDC’s Enterobacteriaceae Carbapenem Breakpoint panel, a collection of

isolates designed specifically to challenge carbapenem-susceptibility tests in Enterobacteria-

ceae [66]. CRO, used broadly for a variety of infections because of its broad coverage and toler-

ability, was chosen as a representative third-generation cephalosporin. Similarly, ETP and

MEM were chosen as clinically representative carbapenems [69]. When testing clinical sam-

ples, AMP was chosen because of its high resistance prevalence and thus availability of resistant

samples (55.8% of clinical urine samples received by the UCLA CML are AMP resistant [70]).

We chose ETP as a representative carbapenem.

Fig 7. Pilot testing of pol-aAST with clinical UTI samples with a modified protocol (see Methods and Discussion).

TTPDCT values for AMP and ETP susceptibility obtained by pol-aAST, with clinical UTI samples containing E. coli.
Each point represents the TTPDCT value for one clinical sample tested once by pol-aAST (S2 and S4 Tables). LAMP

was performed in technical triplicate, see S4 Table for values and statistical details. AMP, ampicillin; AST, antibiotic

susceptibility testing; ETP, ertapenem; LAMP, loop-mediated isothermal amplification; pol-aAST, polymerase-

accessibility AST; R, resistant; S, susceptible; TTPD, time-to-positive difference; TTPDCT, TTPD control to treated;

UTI, urinary tract infection.

https://doi.org/10.1371/journal.pbio.3000652.g007
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The pol-aAST has 2 important requirements: (i) amplification conditions that are not fully

lytic and (ii) release of NAs only from cells that are susceptible to the β-lactam to which they

are exposed. If cells fully lyse, as they do in PCR, there is no difference in amplification

between control and treated aliquots in susceptible isolates (Fig 2). It is only under partial-lysis

conditions, as in LAMP, that cell integrity is preserved long enough to yield a substantial

TTPD. Cell integrity, and rate and degree of lysis, will also depend on the identity of the organ-

ism, as well as its growth rate. In partial-lysis conditions, most NAs are still protected inside

cells in the control aliquot, whereas a significant portion of NAs are released and start amplify-

ing immediately in the treated aliquot. We know from previous work [60] that the speed of an

optimized bulk LAMP reaction makes it is difficult to linearly correlate TTP and NA concen-

tration, unless very sensitive real-time measurements are made. Based on the magnitude of the

differences in TTP observed here and the results measuring NA release (Fig 3), we suspect that

both the state of NAs (inside intact cells versus inside or outside damaged cells) and the differ-

ences in concentration of free NAs contribute to the TTPDs observed. Cell-wall defects and

damage are also likely to increase the penetration of amplification reagents into DNA trapped

inside the remains of susceptible treated cells especially under the elevated temperature of the

amplification reaction. We chose LAMP because we have shown previously that it is a rapid

and specific isothermal amplification chemistry [60]. However, other non-lytic isothermal

amplification chemistries could also be investigated. Additionally, DNA release (Fig 3) could

be measured to determine susceptibility using PCR if combined with a filtration step; we have

not evaluated the pros and cons of this approach in this paper. Lastly, alternative or modified

accessibility-based AST approaches will likely need to be developed for different organisms, as

we have done for Neisseria gonorrhoeae [71].

To demonstrate the flexibility of the pol-aAST method and the simplicity of the workflow,

we investigated 2 approaches for determining susceptibility. The first, measuring TTPDCT,

gave 100% categorical agreement and uses a standard antibiotic-exposure step wherein one ali-

quot serves as the control and the other aliquot is exposed to an antibiotic. The second, mea-

suring TTPDLT, differs in that only a single aliquot of the original sample is used during the

antibiotic-exposure step. After exposure, this aliquot is compared with a fully lysed control ali-

quot, which could be extracted at any point during the assay. Using only a single aliquot of the

original sample during exposure reduces the challenges of fluid handling and metering, which

will be valuable when developing fully integrated devices. When using a control and treated

aliquot, both aliquots must have precisely metered volumes, and the heating required during

exposure must be performed on both aliquots. Both methods showed excellent categorical

agreement with gold-standard broth microdilution, and the choice of approach will be dictated

by future device architecture.

To illustrate the value of phenotypic approaches, we evaluated pol-aAST using isolates that

tested negative for β-lactamase genes and isolates that lack a predictive genotype (e.g., no β-lac-

tamase production, no modified porins, no modified penicillin-binding proteins), based on

published and commercial genotypic assays [67], and CDC classification based on the ResFin-

der database [72], respectively. The antibiotic susceptibility of isolates lacking β-lactamases

cannot be detected by current, FDA-approved genotypic methods, yet bacteria that do not pro-

duce β-lactamases can constitute 11% to 71% of CRE infections [4,73,74]. Using pol-aAST, all

5 of these isolates were correctly categorized as resistant.

Sample-to-answer time directly reflects the speed of diagnostics in practice and is a major

factor in how likely a diagnostic is to be adopted. In general, the shorter the sample-to-answer

time, the more valuable the test is and the more feasible for use at the POC. With urine as the

contrived sample matrix, pol-aAST was able to be completed in <30 min. This timescale is on

par both with suggested time-frames for rapid POC diagnostics [63,64] and measured times of
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patient visits [75]. Additionally, because urine involves relatively simple sample-handling

steps, we were able to perform 4 ASTs in parallel when testing contrived samples. The ability

to run several samples in parallel demonstrates the potential to multiplex multiple antibiotics,

which will be important for the next steps, including the design of integrated devices.

We have demonstrated direct testing of 25 clinical UTI samples using the pol-aAST with

changes to the workflow (see Methods). However, even with the heterogeneity of clinical urine

specimens (see urinalysis in S2 Table), including 2 polymicrobial samples that were correctly

classified as ETP-S, the pol-aAST demonstrated good agreement with gold-standard broth

dilution. The ability to handle polymicrobial samples was predictable based on the molecular

specificity of NA-based methods. We expect this work to set the foundation for future

improvements when using clinical samples.

The pol-aAST method demonstrates a rapid NA-based phenotypic AST for β-lactams and

CREs. As with any academic report of an innovative diagnostic technology development, this

work has limitations in the breadth of its scope and level of technological maturity. The follow-

ing work would further extend the clinical applicability of this study and will be necessary for

translation into a system suitable for regulatory approval and clinical use. First, the pol-aAST

needs to be further developed and evaluated with fresh clinical urine samples from patients;

here, we have used chemically preserved samples that were 3 to 5 d old, which likely decreased

the response time of bacteria to antibiotics. We expect fresh clinical samples to show more

rapid and consistent responses; this hypothesis remains to be tested. We note that many state-

of-the-art phenotypic AST methods are initially published without validation of performance

directly on clinical samples, e.g. a recent breakthrough demonstrating phenotypic AST on iso-

lates and on blood cultures [58]. Urine is a relevant matrix for a CRE diagnostic because UTIs

are the most common source of CRE isolates [76], and because of the large number of hospi-

tal-acquired infections that involve catheters or other long-term indwelling medical devices

[11], where CRE infections cause major problems. Second, to expand the scope of this

approach, other sample types such as blood and blood cultures should be tested (in combina-

tion with appropriate pathogen-isolation and pathogen-enrichment technologies). Third, only

categorical (S/R) agreement with the gold-standard method was tested here. While in the

majority of cases a rapid categorical AST is clinically actionable, testing samples with a range

of minimum inhibitory concentrations (MICs), including those with intermediate resistance,

would further broaden the scope of the method. Fourth, we have not tested pol-aAST against

heteroresistant samples. However, these are more common in gram-positive organisms [77]

and are not common in gram-negative organisms. Fifth, the pol-aAST chemistry should be

integrated with microfluidic devices so the AST can be performed directly on clinical samples

with minimal user intervention. Sixth, the performance of these integrated devices will need to

be evaluated in preclinical and clinical studies.

We emphasize that the specific pol-aAST described in this paper, just like other innovative

rapid ASTs [60,78–81], is not intended to be the sole test to guide treatment. Even though pol-

aAST is based on detection of pathogen-specific NAs and can therefore provide pathogen ID,

we anticipate that in a clinical workflow pol-aAST would be performed after a separate rapid

pathogen ID step [17,18,20]. This ID step would then allow an unambiguous choice of the

appropriate rapid AST. Furthermore, pol-aAST would likely be combined with rapid AST for

other antibiotics, such as fluoroquinolones that can be used to treat CRE infections. AST meth-

ods that rely on similar underlying chemistries are more likely to be successfully integrated

together. Isothermal amplification of pathogen-specific NAs appears to be a promising

approach for AST, and we have already shown how a rapid fluoroquinolone AST can be per-

formed in 30 min using digital LAMP [60]. Integration of pol-aAST with these complementary

methods and translation to a distributable diagnostic will enable (i) improved antibiotic
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stewardship by reducing empiric use of carbapenems for Enterobacteriaceae, (ii) improved

patient outcomes by detecting CRE infections for which carbapenems would be ineffective,

and (iii) more cost-effective surveillance of CRE outbreaks.

We envision that exploratory and mechanistic research inspired by pol-aAST will lead to a

new generation of AST diagnostics. Additional mechanistic studies, such as those involving

visualizing bacterial response to antibiotics [82,83], would clarify the effects of different antibi-

otics on the responses measured in pol-aAST for different pathogens. To evaluate whether pol-

aAST can be broadened beyond CREs and β-lactams, these studies would include organisms

with cell envelopes that differ from Enterobacteriaceae (e.g., gram-positives) and other antimi-

crobials that affect the cell envelope, such as antimicrobial peptides [84] or vancomycin. It

would also be desirable to evaluate pol-aAST with more amplification chemistries, including

modified LAMP assays [85,86] and other isothermal chemistries [87–89], such as recombinase

polymerase amplification (RPA), that are actively being developed and can be performed at

lower temperatures. Ultimately, this new generation of AST diagnostics will be integrated with

the rapid ID methods being developed [17,18,20] and with future rapid NA-based AST meth-

ods for additional antibiotics and pathogens. For example, we have developed the nuclease-

accessibility AST (nuc-aAST) [71], which measures accessibility of DNA to nucleases and was

used to perform a rapid test of antibiotic susceptibility on the fastidious organism N. gonor-
rhoeae. In contrast to the pol-aAST, the nuc-aAST enhances antibiotic-induced damage using

surfactants after the antibiotic-exposure step and performs full cell lysis. Ultimately, to address

the broad diversity of antibiotic-resistant pathogens, it is clear that integrated, multiplexed

POC devices that incorporate multiple rapid phenotypic AST methods are needed. Innovative

methods based on antibiotic-induced accessibility of NAs to enzymes are promising for gener-

ating such ASTs for multiple antibiotics and pathogens in an approach that is intrinsically

compatible with other rapid AST methods [60] and with rapid pathogen ID [17,18,21,22].

Methods

Ethics statement

Remnant urine samples from patients with confirmed UTI were received by UCLA CML and

released to the Caltech researchers under UCLA IRB #19–001098. The UCLA IRB waived the

requirement for informed consent and/or assent and/or parent permission under 45 CFR 46.116

(d) for the entire study. No identifying information was obtained by the Caltech team, and the

research was determined to be exempt by Caltech IRB (applications #18–0858 and #19–0909).

Study design

The objective of this study was to develop a rapid phenotypic AST for β-lactams based on

DNA accessibility to polymerase for use with Enterobacteriaceae. To calculate the sample size

necessary to validate the method (Figs 4 and 5), the Methods and Equation 5 from Banoo and

colleagues [90] were used as described previously [60], namely, we suspected that the specific-

ity and sensitivity of the nuc-aAST method would be 95% with a desired margin of error of

±10%. Under these conditions, 18.2 (or 19) samples must be tested with the nuc-aAST method

and compared to the gold standard. We performed 36 ASTs with isolates susceptible to the

antibiotic being tested and 46 ASTs with isolates resistant to the antibiotic being tested.

Isolates, growth conditions, and antibiotic exposure conditions

We obtained 25 de-identified clinical isolates from the UCLA CML and the CDC’s Enterobac-

teriaceae Carbapenem Breakpoint panel [66]. In the case of isolates obtained from the UCLA
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CML, MICs were determined as described previously [59]. Genotypic testing of the 2 E. coli
and 2 K. pneumoniae isolates selected for their lack of known β-lactamase genes was performed

by UCLA CML using a previously published assay [67] and separately at the Keck School of

Medicine of USC using the FDA-approved Cepheid Xpert Carba-R test. Whole genome

sequencing of the single Ebs isolate selected for its lack of known resistance genes was per-

formed by the CDC [66]. All isolates were stored as glycerol stocks at −80˚C. Glycerol stocks

were streaked onto Trypticase Soy Agar with 5% sheep’s blood (Becton Dickinson, Franklin

Lakes, NJ) and grown overnight at 37˚C or resuspended directly in liquid media. Prior to

experiments, a small clump of cells was resuspended from plates or glycerol stocks in 2 mL

Brain Heart Infusion Broth (BHI; Becton Dickinson) at 37˚C + 5% CO2 with 500 rpm shaking

for 2 to 4 h until visibly turbid. OD600 of the cultures was then measured, and working cultures

were prepared at an OD600 of 0.01–0.07 and grown for 50–145 min at 37˚C + 5% CO2 with

500 rpm. Working cultures were then diluted 10X into control and treated aliquots for antibi-

otic exposure. For validation experiments, antibiotic exposure was performed in 100 μL vol-

umes consisting of 80 μL Mueller Hinton II Broth (MHB; Becton Dickinson), 5 μL nuclease-

free H2O (NF-H2O), 5 μL 20X antibiotic stock solution, and 10 μL of working culture. In con-

trol aliquots, antibiotic stock solution was replaced with NF-H2O. For filtration experiments,

antibiotic exposure was performed in 100 μL volumes consisting of 65 μL MHB (Becton Dick-

inson), 21 μL NF-H2O, 4 μL 25X antibiotic stock solution, and 10 μL of working culture. In

control aliquots, antibiotic stock solution was replaced with NF-H2O.

Antibiotic stocks

CRO disodium salt hemi(heptahydrate) (Sigma, St. Louis, MO), ETP sodium salt (Research

Products International, Prospect, IL), and MEM trihydrate (TCI, Portland, OR) were used to

create 1.0 mg/mL antibiotic stock solutions in NF-H2O based on manufacturer-reported

purity, aliquoted, and stored at −80˚C. AMP sodium salt (Sigma, St. Louis, MO) was used to

create 10.0 mg/mL antibiotic stock solutions in NF-H2O based on manufacturer-reported

purity, aliquoted, and stored at −80˚C. Aliquots were only thawed and used once on the days

of experiments.

Comparison of amplification methods

In order to compare amplification using LAMP and PCR, E. coli isolates were exposed to

0.5 μg/mL ETP for 15 min. Samples were then transferred directly into either PCR or LAMP

mix on ice. Amplification was started immediately. qPCR was performed on a Roche LightCy-

cler 96 using SsoFast EvaGreen Supermix (BioRad, Hercules, CA); 10 μL reactions were used.

10% of the final reaction volume was template. Published primers targeting the 23S rRNA

genes of Enterobacteriaceae were used [91] at a final concentration of 500 nM. Cycling condi-

tions consisted of 3.0 min at 95˚C, followed by 35 cycles of 95˚C for 10 s, 60˚C for 10 s, and

72˚C for 15 s. Fluorescence was measured using the SYBR Green channel after each 72˚C

extension step. LAMP was performed on a BioRad CFX96 using the following conditions:

10 μL reaction volume containing 1X Isothermal Reaction Buffer II (NEB), 5 mM MgSO4

(NEB), 1.4 mM dNTPs (NEB), 320 U/mL Bst 3.0 (NEB), and 2 μM Syto-9 (Thermo Fisher);

10% of the reaction volume was template. Primer sequences (designed to target the 23S rRNA

genes of Enterobacteriaceae) and concentrations have been described previously [60]. Cycling

conditions consisted of 2.0 min at 12˚C (while lid was heating), followed by 120 cycles of 70˚C

for 10 s. Fluorescence was measured using the SYBR Green channel every 10 s (after each

cycle). We also ran an analogous LAMP reaction in the absence of Tween-20 (which is nor-

mally present in Isothermal Reaction Buffer II; NEB), to test for a potential difference in lysis
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efficiency; however, the resulting reaction rates were substantially lower than when Tween-20

was included.

Filtration experiments

Filtration experiments were performed using E. coli isolates exposed to 0.5 μg/mL ETP for 15

min. Immediately following exposure, cultures were passed through 0.22 μm, 1.5 mL cellulose

acetate centrifuge tube filters (Corning Costar Spin-X, Corning, NY). DNA retention by the

filters was <7% when measured by quantifying purified Lambda phage DNA (NEB) before

and after filtration. Quantification was performed using ddPCR (QX200, BioRad). In filtration

experiments, 50 μL of sample was added to the filter and centrifuged for 4 min at 1,000 rcf.

DNA was extracted from both the feed and filtrate using QuickExtract DNA Extraction Solu-

tion (Lucigen, Middleton, WI). Samples were diluted 10X into extraction buffer and extracted

according to manufacturer instructions. The concentration of the single copy E. coli uidA gene

was then quantified in the feed and filtrate extractions. The percentage of E. coli DNA in the

filtrate was calculated as the filtrate concentration divided by the feed concentration. ddPCR

was performed using QX200 ddPCR Supermix for EvaGreen (BioRad); 10% of the final reac-

tion volume was template. Published primers targeting the uidA gene in E. coli were used [92]

at a final concentration of 500 nM. Cycling conditions consisted of 5.0 min at 95˚C, followed

by 40 cycles of 95˚C for 30 s, 60˚C for 30 s, and 72˚C for 30 s, with final dye stabilization steps

of 4˚C for 5.0 min followed by 90˚C for 5.0 min.

pol-aAST validation with clinical isolates

For pol-aAST validation experiments, E. coli and Enterobacter spp. isolates were exposed to

either 2.0 μg/mL CRO, 0.5 μg/mL ETP, or 1.0 μg/mL MEM. K. pneumoniae isolates were

exposed to either 2.0 μg/mL CRO, 1.0 μg/mL ETP, or 1.0 μg/mL MEM. Some isolates were run

multiple times on different days. If this was the case, the average TTPDCT and TTPDLT are

reported for that isolate. All isolates were exposed to antibiotics for 15 min in 100 μL reaction

volumes in 200 μL PCR tube strips. After 15 min of antibiotic exposure, 10 μL of samples were

transferred as template to LAMP reaction mix (as described earlier) on ice in technical tripli-

cate. Amplification was immediately started.

Timed sample-to-answer using contrived urine samples

Timed sample-to-answer experiments were performed in the same fashion as pol-aAST valida-

tion experiments, except with the following modifications. Following initial growth and mea-

surement of OD, isolates were resuspended in fresh, never-frozen, pooled human urine from

healthy donors (Lee BioSciences). Additionally, a timer was started as soon as samples were

added to the antibiotic exposure conditions. E. coli and K. pneumoniae isolates were exposed

to 0.5 and 1.0 μg/mL ETP (respectively) for 13 min. The duration of 13 min was chosen to

ensure that all handling steps could be completed within the first 15 min of the assay. Amplifi-

cation was performed until all reactions reached a fluorescence value of 1,000 relative fluores-

cent units (RFU) or greater. Amplification was then stopped, and TTP values were copied into

a spreadsheet pre-populated with formulas to automatically output susceptibility calls. The

timer was stopped once a susceptibility call had been determined.

Testing of pol-aAST with clinical samples

UCLA CML performed urinalysis, confirmation of UTI, pathogen isolation and ID, and subse-

quent gold-standard AST using broth microdilution. Gold-standard AST results were sent to
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Caltech researchers on the same day samples were received. Enterobacteriaceae-positive sam-

ples were shipped at ambient temperature to Caltech in BD Vacutainer Plus C&S preservative

tubes (Becton Dickinson, Catalog Number 364951) containing a boric acid preservative. The

pol-aAST experiments were performed directly on these samples within 3–5 d of their collec-

tion at UCLA. Urine samples were first warmed up to 37˚C without shaking for 30 min, to

approximate temperature of freshly collected urine. Then, 30 μL of urine was diluted into

70 μL of Cation-adjusted MHB (BD) containing 0.1% Tween-20 (Teknova, Hollister, CA) and

placed at 37˚C with shaking at 750 rpm for 3 min. Samples were then centrifuged at 5,000 rcf

for 2 min. The supernatant was removed, and the sample was resuspended in 100 μL of MHB.

Samples were then incubated for 30 min at 37˚C with 750 rpm shaking. Antibiotic exposure

was performed in a final volume of 100 μL, after transfer of 20 μL of incubated sample to 80 μL

of the exposure condition: 75 μL of MHB and 5 μL of 20X antibiotic stock solution in NF-H2O

for treated aliquots, or 75 μL of MHB with 5 μL of NF-H2O alone for control aliquots. For

measurement of ETP susceptibility, the exposure condition contained a final concentration of

1μg/mL of ETP. Aliquots were incubated at 37˚C with shaking for 20 min. For measurement

of AMP susceptibility, the antibiotic-exposure condition contained a final concentration of

16 μg/mL of AMP, and aliquots were incubated at 37˚C with shaking for 45 min. The control

and treated aliquots were subjected to a set of dilutions to account for variable bacterial load of

the samples and resolution within the working range of the LAMP reaction. Following dilu-

tion, 1 μL of the control and treated aliquots was added to each LAMP reaction well. There

were 3 technical replicates (3 LAMP reaction wells) for each condition (control and treated).

We measured the TTP for the reactions at each dilution, and then selected the dilution that

yielded a control TTP value later than 4.7 min. The TTP results from this dilution were used to

calculate TTPDCT (and determine susceptibility). Samples with a TTPDCT > 0.25 min were

considered susceptible, while samples with TTPDCT� to 0.25 min were considered resistant.

The susceptibility determination of the pol-aAST method was then compared to the gold-stan-

dard culture results obtained by the UCLA CML to measure assay performance.

Statistical analysis

Significance referenced in the text for Fig 2 were calculated using GraphPad Prism 8.0 software

from an unpaired, two-tailed t test comparing the averages of 3 replicate Cq values of each con-

trol sample to each treated sample. A significance value of 0.02 was used for statistical signifi-

cance. All percent release values (Fig 3) and TTPD values (Figs 4–6) were calculated using

Microsoft Excel. Data were plotted using GraphPad Prism 8.0 software. Thresholds for deter-

mining susceptibility in TTPDCT and TTPDLT plots were set halfway between the lowest S and

highest R values for each organism/antibiotic combination. For preliminary tests with clinical

samples, we defined a TTPDCT of above 0.25 min for a susceptible determination; this value

would be further defined in a subsequent larger-scale clinical trial.

Supporting information

S1 Table. Clinical isolates used in this study. Isolates were obtained from the UCLA CML

and the CDC’s Enterobacteriaceae Carbapenem Breakpoint panel. The MIC of each isolate

(based on broth microdilution performed by UCLA CML) are provided.

(XLSX)

S2 Table. Clinical urine samples from patients with UTIs used in this study. Clinical sam-

ples were obtained from the UCLA CML. MICs based on broth microdilution performed by
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UCLA CML are provided along with urinalysis results.

(XLSX)

S3 Table. Raw data and calculated error for all pol-aASTs performed using clinical isolates.

Cqs and TTPs are provided.

(XLSX)

S4 Table. Raw data and calculated error for all pol-aASTs performed using clinical UTI

samples. Cqs and TTPs are provided.

(XLSX)

S5 Table. Raw data for amplification curves shown in Fig 2. Technical triplicate values are

provided for control and treated (0.50 μg/mL ETP) samples run using LAMP and PCR. Grey

lines in Fig 2 represent standard deviation of the triplicate samples calculated using Graphpad

Prism.

(CSV)

S6 Table. Raw data for percentage of DNA release shown in Fig 3. Negative percentage

release values were set to zero before averaging. Averages and standard deviations of each iso-

late/antibiotic combination were calculated using GraphPad Prism.

(XLSX)

S1 Fig. Validation of pol-aAST TTPDCT method using AMP. E. coli isolates were exposed to

16 μg/mL AMP for 15 min. Threshold was set halfway between the lowest susceptible and

highest resistant TTPDCT value. Data are in S3 Table. R, resistant; S, susceptible.

(TIF)

S1 Text. Detailed statement of author contributions.

(PDF)
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