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This paper reviews work on a microfluidic system that relies on chaotic advection
to rapidly mix multiple reagents isolated in droplets (plugs). Using a combination
of turns and straight sections, winding microfluidic channels create unsteady fluid
flows that rapidly mix the multiple reagents contained within plugs. The scaling
of mixing for a range of channel widths, flow velocities and diffusion coefficients
has been investigated. Due to rapid mixing, low sample consumption and transport
of reagents with no dispersion, the system is particularly appropriate for chemical
kinetics and biochemical assays. The mixing occurs by chaotic advection and is rapid
(sub-millisecond), allowing for an accurate description of fast reaction kinetics. In
addition, mixing has been characterized and explicitly incorporated into the kinetic
model.
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1. Introduction

This paper reviews our work on the use of mixing by chaotic advection inside droplets
in microfluidic channels to perform kinetic measurements with high temporal reso-
lution and low consumption of samples. The system relies on using immiscible fluids
to form and transport droplets containing multiple reagents through a microflu-
idic network and can be used for screening of conditions for protein crystallization
(Zheng et al . 2003). Chaotic advection is induced inside droplets moving through
winding channels (Song et al . 2003a, b). This paper gives a step-by-step overview
of the system with the focus on the physics and the phenomena involved (Tice et
al . 2003). It emphasizes that chaotic advection in droplets provides a mixing profile
that can be experimentally quantified, allows for a simple mathematical treatment
that incorporates this mixing profile into kinetic models, and stresses that the shape
of this profile is especially attractive for interpreting kinetic measurements (Song &
Ismagilov 2003).

There are two desired features of a system for making high temporal resolution
kinetic measurements of samples available in minute quantities: (i) rapid mixing
of reagents, and (ii) low consumption of sample. Rapid kinetic measurements on a
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millisecond time-scale have been possible using methods that rely on turbulence to
rapidly mix reagents: stopped flow, quenched flow and other methods (Ali & Lohman
1997; Brazeau et al . 2001; Krantz & Sosnick 2000; Shastry et al . 1998). Mixing times
as low as 15 µs have been reported using turbulence (Shastry et al . 1998). Dead times
of ca. 1 ms are common in turbulence-based commercial stopped flow instruments.
Turbulence may be used to achieve rapid mixing only at high values of the Reynolds
number, Re (Re = wUρ/µ, where w is the cross-sectional dimension (m), U is the
flow velocity (m s−1), ρ is the density of the fluid (kg m−3), and µ is the viscosity
(kg m−1 s−1)). To achieve high values of the Reynolds number, large volumes of
sample must be consumed. For simplicity, we assume a channel with a square cross-
section and Re = V ρ/wµ, where V = w2U , the volumetric flow rate (m3 s−1). To
achieve Re = 2000 in a channel with w = 1 mm, the volumetric flow rate must be
V = 200 cm3 s−1. To achieve Re = 2000 in a channel of w = 0.1 mm, the volumetric
flow rate must be V = 20 cm3 s−1; and for w = 0.01 mm, V = 2 cm3 s−1. Sample
consumption may be reduced by using specially designed mixing geometries with even
smaller dimensions. Inducing high flow velocities in small channels is difficult because,
as the cross-sectional dimension w of the channel decreases, for a fixed volumetric
flow rate and length of the channel, the pressure drop across the channel increases
as 1/w4 for laminar, incompressible flow of a Newtonian fluid. For turbulent flow,
the pressure drop increases approximately as 1/w19/4 (Bird et al . 2002). In general,
mixing by turbulence requires large consumption of samples, of the order of 1 ml s−1.

Microfluidic systems operate at low flow velocities and small cross-sectional dimen-
sion, and therefore at low Re (Re < 100). Due to the low Re, microfluidic systems are
able to perform experiments with low sample consumption, including kinetic mea-
surements (Kerby & Chien 2001; Kakuta et al . 2003; Mao et al . 2002; Pollack et al .
2001; Russell et al . 2002). While microfluidic systems reduce sample consumption,
diffusive mixing in laminar streams flowing through microchannels at low Re is slow,
as diffusive mixing time, tdiff (s), is proportional to the square of the striation thick-
ness, st (m), where the striation thickness is the distance through which diffusion
must occur:

tdiff = s2
t/2D, (1.1)

where D (m2 s−1) is the diffusion coefficient. Hydrodynamic focusing rapidly mixes
reagents by injecting a reagent stream between two other flowing streams of reagent,
effectively squeezing (focusing) the central reagent stream to a thickness st ≈ 100 nm.
Mixing by diffusion rapidly occurs across this distance, resulting in microsecond
mixing times (Knight et al . 1998).

Rapid mixing with a low consumption of reagents is possible using chaotic advec-
tion (Ottino & Wiggins 2004; Wiggins & Ottino 2004). Chaotic advection stretches
and folds the fluid volume to give rise to an exponential decrease in st (Ottino 1989;
Aref 1984). Chaotic flow cannot be created in steady two-dimensional flow (Ottino
et al . 1992); chaotic flow in three-dimensional flows has been used to mix fluids in
microfluidic channels at intermediate (Liu et al . 2000) and low values of the Reynolds
number (Stroock et al . 2002a, b). Time may be used as the third dimension (Ottino
et al . 1992), and chaos may be induced in two-dimensional but time-dependent
(unsteady) flows. In time-periodic chaotic flow, the st decreases exponentially with
the number of cycles, n, the fluid has completed, governed by the Lyapunov exponent
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σ associated with stretching of fluid:

st(n) = st(0)σ−n. (1.2)

We have used this concept to induce chaotic mixing in unsteady, time-periodic flows
inside droplets moving through winding microchannels (Song et al . 2003b). This
mixing was especially useful for performing kinetic measurements on a millisecond
time-scale (Song & Ismagilov 2003). Both of these topics are the subjects of this
review, organized as follows:

(i) the formation of droplets,

(ii) non-chaotic mixing in droplets moving through straight channels,

(iii) chaotic mixing in droplets moving through winding channels,

(iv) quantifying mixing,

(v) chaotic mixing in a range of geometries,

(vi) the baker’s transformation as a guide to understanding chaotic advection in
droplets,

(vii) an argument describing the scaling of chaotic mixing, and

(viii) the application of this system to making kinetic measurements.

2. Formation of plugs

This system relies on using two-phase flow of water and of fluorinated, water-
immiscible fluids to form aqueous droplets (plugs) (Tice et al . 2003) in hydrophobic
poly(dimethylsiloxane) microchannels, fabricated by rapid prototyping (McDonald
& Whitesides 2002; McDonald et al . 2000; Duffy et al . 1998). We define ‘plugs’ as
droplets that are large enough to touch the walls of the channel and do not wet
the walls (of course, the plugs are not in direct contact with the walls, as they
are surrounded by a layer of carrier fluid). Plugs form spontaneously (figure 1) when
multiple streams of aqueous reagents are injected into a water-immiscible fluorinated
carrier fluid (Song et al . 2003b). The aqueous reagents are kept separate by a middle
inert stream to avoid mixing of the aqueous reagents until the plug is formed. The
volumes of plugs are set primarily by the cross-sectional dimension of the microfluidic
channel, and have been varied from ca. 1 pl to ca. 100 nl (Tice et al . 2003).

Dispersion is a problem associated with pressure-driven laminar flow in microflu-
idic channels (Bird et al . 2002). As the flow is parabolic, reagents move at different
velocities across the width of the channel—slower along the walls but faster in the
middle of the channel. Dispersion also occurs by the diffusion of reagents along the
channel. Turbulence and mixing by chaotic advection may reduce dispersion, but
localization of reagents in droplets removes it completely (Burns et al . 1998).
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Figure 1. Formation of plugs from three aqueous solutions in a flow of immiscible fluorinated
fluid in a microfluidic channel. Images also show the effects of the initial conditions of plug
formation on the mixing of plugs moving through straight channels. (a)–(c) Left: a schematic of
the microfluidic network. Right: microphotographs of plugs formed at water fractions of (a) 0.14,
(b) 0.30 and (c) 0.60, respectively, from top to bottom. Plugs were travelling at 50 mm s−1. The
blue box indicates the region of the network shown. Red aqueous streams were solutions of
0.067 M [Fe(SCN)x](3−x)+ and colourless aqueous streams were 0.2 M KNO3. The oil stream
was a solution of water-immiscible fluorinated fluid (perfluorodecalin) with a (10:1) v/v ratio of
1H,1H,2H,2H-perfluoro-1-octanol. The inset in (a) is a schematic defining the sides of the plug
relative to flow velocity U . (d) A graph of the relative optical intensity of red [Fe(SCN)x](3−x)+

complexes in plugs at WF = 0.14, 0.30 and 0.60 (lines). Grey shaded areas represent the walls
of the microchannel on left (x = 1.0) and right (x = 0.0).

3. Mixing in plugs moving through straight channels

Recirculating flow is induced inside droplets moving through straight microfluidic
channels. When a plug moves through a straight channel, two vortices are formed in
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the plug, one in the left half and the other in the right half of the plug (inset, fig-
ure 1a). This flow may be used to reduce the striation thickness and enhance mixing,
as described by Handique & Burns (2001). For ideal initial conditions, the movement
of a plug through a straight microchannel and the flows that result decrease the initial
striation thickness from st(0) to st(d) by

st(d) = st(0) × l/d, (3.1)

where d (m) is the distance travelled by the droplet, and l (m) is the length of the
droplet (Handique & Burns 2001).

We have shown (Tice et al . 2003) that the effectiveness of mixing inside a plug
as it moves through a straight microchannel is sensitive to the initial distribution of
the reagents in the plug, determined by the details of the plug’s formation. Ideally,
in order to enhance mixing through the recirculating flow in the plug, the fluid must
be distributed evenly throughout the left and right halves of the plug. In straight
microchannels, an eddy forms as the aqueous phase is injected into the stream of
carrier fluid, and this eddy distributes reagents to different regions of the plug. We
refer to the formation of this eddy as ‘twirling’. We have shown that formation of
the eddy is independent of flow velocity (Tice et al . 2003) and has been observed for
the range of viscosities we work with (µ = 1–20 mPa s) and for a range of channel
sizes (w = 20–200 µm). Ultimately, twirling depends on the relative volumetric flow
rates of aqueous solutions and the carrier fluid, described by the ‘water fraction’. The
water fraction is defined as WF = Vw/(Vw +Vf), where Vw and Vf are the volumetric
flow rates of water, Vw (µl min−1), and the fluorinated fluid, Vf (µl min−1). If the
WF of the flow is too low, then the eddy distributes reagents unevenly throughout
the plug, as observed in figure 1a, as most of the red solution is distributed to the
left half of the plug. This can be more clearly seen in the graph in figure 1d for
WF = 0.14. This particular form of twirling is referred to as ‘over-twirling’. For a
narrow range of values of WF, twirling distributes reagents evenly throughout the
plug and enhances mixing (figure 1b). If the WF of the flow is high, the eddy does
less to distribute reagents (figure 1c). Even under ideal conditions, the effectiveness
of mixing inside a plug moving through a straight microchannel decreases as 1/d
as the plug moves further through the channel (equation (3.1)) (Handique & Burns
2001; Ottino 1989).

4. Chaotic advection

Chaotic advection at low values of Re has been studied extensively in macroscopic
flow cavities filled with viscous liquids (Ottino 1989). In a flow cavity, motion of
the walls induces two-dimensional flow within the fluid, and we use it as a way to
think about flows inside moving plugs. There are three differences between mixing
inside a plug and mixing inside a flow cavity. First is a simple difference in the
frame of reference: in the plug, the fluid moves relative to the stationary walls, but,
in a flow cavity, the walls move relative to the fluid. The second difference is the
direction of motion: in a plug, the fluid moves in the same direction relative to both
walls. In a flow cavity, the walls can move independently in either direction relative
to the fluid. The third difference is the dimensionality of the flow: inside a plug,
the flow is three-dimensional, since the plug is in contact with both the side walls
and the top/bottom walls. However, in the experiments described here, the solutes
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are distributed uniformly along the vertical dimension and mixing occurs primarily
by the flow induced by side walls. Chaotic mixing in three-dimensional flows inside
droplets is known to occur (Kroujiline & Stone 1999; Stone et al . 1991; Bryden &
Brenner 1999).

When the motion of the walls in the flow cavity is steady, the fluid simply recir-
culates, as shown schematically in figure 2a(i). This recirculation induces rather
inefficient mixing, as shown in figure 2a(ii) (Ottino et al . 1992; Ottino 1989). Such
mixing is similar to mixing in a plug moving through a straight microchannel, with
efficiency decreasing as 1/d, as discussed above. Due to the difference in the direction
of motion of the fluid relative to the walls, there are two vortices induced inside a
plug, as opposed to one vortex in a flow cavity (figure 2a(iii)). These two vortices
mix the contents of each half of the plug, but there is no fluid exchange between the
two halves, resulting in poor mixing.

When the motion of the walls in the flow cavity is unsteady (time-periodic) (fig-
ure 2b(i)), rapid mixing by chaotic advection is observed (figure 2b(ii)). Chaos can-
not be generated in steady two-dimensional flows. In unsteady flows time becomes
the third dimension, crossing of streamlines becomes possible, and chaos is induced
(Ottino et al . 1992; Ottino 1989). Unsteady fluid flow resembling that in flow cavities
is induced inside plugs moving through winding microchannels (figure 2b(iii)). The
image in figure 2b(ii) shows chaotic mixing in a flow cavity with co-rotating vortices,
although chaos can be generated in two counter-rotating vortices as well (Solomon
& Gollub 1988; Jana et al . 1994). The flow in plugs moving through winding chan-
nels can be thought of in terms of two counter-rotating vortices (figure 2b(iii)) on
the left and the right sides of the plug (defined in figure 2c), and plugs in winding
channels chaotic advection has been shown to mix fluids rapidly (figure 3c) (Song et
al . 2003b).

5. Quantifying mixing

(a) The time–distance relationship

The mixing time of the reagents within the plug is related to the distance the plug
has travelled in the channel. When the plug is travelling at a constant velocity, the
distance the plug has moved through the channel since its formation is equivalent
to the time the fluid isolated in the plug has mixed, as t = d/U , where t (s) is
time, d (m) is distance travelled along the channel, and U (m s−1) is the constant
flow velocity. There is a thin film of carrier fluid that separates the plug from the
walls of the microchannel (Bico & Quéré 2002), and there may be some slip between
the two phases. However, our measurements of plug size under conditions used in
this paper yield volume fractions virtually equivalent to expected values (Tice et al .
2003), which suggests that effects of slip are negligible. Therefore, this time–distance
relationship is valid and can be used to perform and interpret kinetic measurements.

(b) Using fluorescence to quantify mixing

Fluorescence was used to quantify the mixing time through the time–distance rela-
tionship. We quantified mixing by measuring the intensity of the fluorescence gener-
ated by the binding reaction between Ca2+ and fluo-4 at different points along the
channel, and therefore at different times in the progression of mixing (figure 3b). A
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mixing profile can be obtained by plotting measured intensity versus time (figure 3c).
As the reaction is diffusion controlled, the time of the reaction corresponds to the mix-
ing time. In the original microchannels (28 µm×45 µm, figure 3b), mixing times of 1–
2 ms were measured. Reducing the cross-sectional dimensions to 10 µm×10 µm (Song
et al . 2003b), among other improvements, moved mixing into the sub-millisecond
regime (figure 3c). Scaling of mixing as a function of experimental conditions is
described later in § 8.

(c) Challenges encountered when quantifying mixing

We have encountered two challenges when quantifying mixing. First, over-twirling
and incomplete snap-off at the plug-forming region causes the time–distance rela-
tionship to break down. Mixed solution twirls up into the aqueous inlet of the plug-
forming region (over-twirling) and a portion of it can be left there after the plug
snaps off (incomplete snap-off) (figure 4a). Incomplete snap-off is illustrated further
by the fluorescing spot at the inlet of the plug-forming region in the fluorescence
image (figure 4b). These phenomena cause the solutions to mix for a longer time
than predicted by the position of the plug in the channel—in fact, it is possible to
create conditions under which plugs are completely mixed before snap-off—providing
an apparent and incorrect mixing time of zero. Since the time of mixing of the solu-
tion at the inlet junction is not well defined under these conditions, quantifying the
beginning of mixing is not possible.

Second, it would be advantageous to increase the time-averaged fluorescence sig-
nal arising from the fluorescent plugs and non-fluorescent carrier fluid. In order to
optimize mixing, plugs must be small but still touch all walls of the channel in order
to create the recirculating flow in the fluid volume. These small plugs mix more
effectively than larger plugs, as the efficiency of mixing depends on d/l, where d (m)
is the distance the plug has moved through the channel and l (m) is the length of the
plug. To do so with the geometry shown in figure 3, the water fraction must be small.
At extremely low values of WF, the spatial period of the flow, or the centre-to-centre
distance between adjacent plugs, increases. Consequently, at low values of WF, flow
is characterized by small plugs separated by a length of oil around 4–5 times the plug
length (Tice et al . 2003), leading to a lower density of plugs in the microchannel.
This decreases the fluorescence signal, which is already limited by the short optical
path, determined by the channel thickness (ca. 10–100 µm). A high density of small
plugs travelling through the channel is desired.

(d) Overcoming the challenges of obtaining fluorescence intensity data

To solve the problems of quantifying and analysing fluorescence data, the channels
in the plug-forming region were narrowed to half the width of the channels in the
rest of the network (figure 5). The narrowed junction moves the point of snap-off
further downstream. As seen in time-lapse images (figure 5a), the flow of aqueous
solutions and the water-immiscible fluorinated fluid remains laminar through the
narrowed region until the plug is formed (figure 5b). Presumably, the carrier fluid is
flowing above and below the aqueous streams. In the plug that is formed, the red
solution is completely isolated from the clear solution, indicating that there has been
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Figure 2. Comparing mixing in flow cavities and in plugs moving through microchannels. Mixing
by (a) steady, recirculating flow and (b) chaotic advection. (i) Mixing represented by schemes
of flow in a flow cavity; (ii) images of flow in a flow cavity (reproduced with permission of
Cambridge University Press from Ottino (1989)); and (iii) schemes of flow in plugs moving
through (a) a straight and (b) a winding channel.
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Figure 3. Inducing mixing by chaotic advection in plugs moving through microfluidic channels
and quantifying this mixing by measuring fluorescence. (a) Left: schematic of the microfluidic
network. Right: microphotograph (10 µs exposure) illustrating mixing. The solutions used were
as in figure 1. (b) Left: schematic of the microfluidic network. Right: false-colour fluorescence
microphotograph (2 s exposure, shows time-averaged intensity where individual plugs are not
visible). The white lines trace the walls of the microchannel. The dashed white lines indicate
the laminar flow of reagents in the junction of the aqueous inlet channels. Aqueous streams were
solutions of 54 µM fluo-4, 70 µM CaCl2 (both in 20 mM sodium morpholine propanesulfonate
buffer (MOPS), pH 7.2) and 20 mM buffer. The oil stream was as in figure 1a. (c) A mixing
profile obtained by analysing fluorescent images from a microchannel with smaller cross-sectional
dimensions 10 µm × 10 µm.

no twirling prior to formation of the plug, and no mixed solution has been left at
the inlet. Because of the change in the region of snap-off, smaller plugs are formed,
which also affects mixing (as discussed in § 6 below). This change is beneficial as the
fluorescence signal increases because the new junction allows for the formation of
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Figure 4. Over-twirling causes some mixed aqueous solutions to be left behind in the aqueous
inlet of the plug-forming region after the plug snaps off, resulting in a poorly defined mixing
time. (a) Left: schematic of the microfluidic network. Right: microphotograph of the plug-forming
region of the microfluidic network. The aqueous streams were as in figure 1. The oil stream was
as in figure 3a. The aqueous solution plug forming at the junction is uniform in colour, indicat-
ing that there is mixing at the junction. Mixed aqueous solution remains at the junction after
the detachment of the plug. (b) Left: schematic of the microfluidic network. Right: false-colour
fluorescence microphotograph (0.9 s exposure). The white lines trace the walls of the microchan-
nel. Aqueous streams were solutions of 55.7 µM fluo-4, 150 µM CaCl2 (both in 20 mM MOPS,
pH 7.2) and 20 mM MOPS. The intense green spot at the aqueous inlet of the plug-forming
region reveals that some mixed solutions remains there after each plug snaps off.
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Figure 5. Chaotic advection in plugs moving through winding channels of various geometries. The
narrowed channels at the plug-forming junction cause the aqueous solution to remain as distinct
laminar streams until the formation of the plug. Left: schematic of the microfluidic network.
Right: microphotographs of the microfluidic network. (a) Mixing in larger plugs (WF = 0.55).
Arrows indicate ‘flipping’ of coloured solution in the back of the plug from one side to another.
(b) Mixing in smaller plugs (WF = 0.44) is more efficient. In the smaller plugs, ‘flipping’ is not
observed. The aqueous streams were as in figure 1. The oil stream was as in figure 3a.
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smaller plugs that are much closer together than those formed in the wider inlet. The
narrowed inlet preserves the time–distance relationship while providing an adequate
fluorescent signal.

6. Effects of channel geometry on chaotic mixing

Chaotic advection does not require a very specific geometry of winding channels.
We have observed mixing by chaotic advection in a variety of winding microchan-
nel geometries. Previously, we have used smooth turns to induce chaotic advection
(Song et al . 2003b). We have also been able to generate chaotic advection in winding
microchannels with sharp turns of 90◦ and 135◦.

The size of the plugs (controlled by the WF, figure 1) formed in the channels affects
the flow patterns observed inside the plugs, and affects mixing. Larger plugs, shown
in figure 5a, form striations in the front of the plug, yet the back half of the plug
appears to ‘flip’ the colours of its left and right sides (defined in figure 1a, inset),
shown schematically by arrows in figure 5a. This flipping is a clear indication that
mixing is not efficient throughout the plug. In chaotic advection, regions of poorly
mixed solutions can exist even in the presence of chaos, and may be eliminated by
randomizing the flows (Ottino et al . 1992). In the smaller plugs moving through the
same channels (figure 5b), the striations form in the middle of the plug, ‘flipping’ is
not observed, and mixing appears to be more efficient. Empirically, we have observed
that mixing is best for plugs of a length approximately equal to two widths of the
channel. In order to predict the geometry of microchannels that induces the most
efficient mixing for each size of plugs, it is desirable to model the flow inside the
plugs.

7. The baker’s transformation

In order to model mixing by chaotic advection inside plugs, we have used the baker’s
transformation (Ottino & Wiggins 2004; Wiggins & Ottino 2004) as a guide. In the
baker’s transformation, striation thickness decreases through a series of stretching,
folding, and reorienting events as shown schematically at the top of figure 6. Mixing
is very efficient because the striation thickness decreases exponentially according to

st(n) = st(0) × 2−n, (7.1)

where n is the number of fold, stretch and reorient cycles, st(0) is the initial stria-
tion thickness, and st(n) is the striation thickness after n cycles. For simplicity, we
assumed that the Lyapunov exponent σ = 2. This mixing by exponential decrease in
striation thickness is similar to the ‘rolling droplet’ idea described by Fowler et al .
(2002).

The baker’s transformation (figure 7a) is certainly an idealization of the mixing in
plugs, but flow patterns reminiscent of the baker’s transformation can be observed
experimentally inside plugs moving through microchannels (figure 7c). During one
cycle, the plug experiences recirculating flow in the straight portions, which accounts
for the folding and stretching, and then the plug reorients as it continues around a
turn (shown schematically in figure 7a). The striation thickness decreases by a factor
of two for each cycle, and as the cycles are repeated the striation thickness decreases
exponentially according to equation (7.1).
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We emphasize that there is no fundamental difference in fluid flow within plugs
moving through sharp turns or smooth turns present in winding channels. We believe
that the effects of channel geometry on the recirculating flows can be seen by its
effects on the two vortices within the plug. In a straight channel, these two vortices
are symmetric (figure 2a(iii)). Around a smooth turn in a winding channel, the
vortices are asymmetric (figure 7b(i)). Around a sharp turn, the asymmetry is large
enough that the smaller vortex can be neglected and the flow within in the plug may
be approximated by a single large vortex (figure 7b(ii)). This large vortex can be
viewed as the reorientation of the whole plug in the baker’s transformation.

8. The scaling of mixing by chaotic advection

Chaotic mixing inside plugs moving through winding microchannels has been
observed to obey a simple scaling argument that describes the dependence of mixing
time on channel width, flow velocity and diffusion coefficient of reagents (Song et
al . 2003a). The scaling argument was derived in the spirit of the baker’s transfor-
mation as has been done previously for chaotic mixing in general (Ottino 1994) and
for chaotic mixing in microchannels (Stroock et al . 2002b). Two assumptions were
made. First, we assumed that for one cycle of chaotic advection a plug must travel
a distance equal to a certain number of its own lengths. To complete one cycle, the
plug must travel the distance d(1) (m) that is proportional to the length of the plug,
and in turn is proportional to the cross-sectional dimension of the microchannel:
d(1) ∼ l = a × w, where l (m) is the length of the plug, a is the length of the plug
measured in widths of the channel, and w is the width of the microchannel. This
assumption is justified and is convenient because the length of the plug is propor-
tional to the channel width—as channels become smaller, plugs become smaller. For
each cycle of chaotic advection the striation thickness decreases by a factor of σ.
Second, we assumed that the mixing time tmix is approximately the time when the
times for convective transport and diffusive mixing are matched. In other words, the
mixing time is assumed to be approximately equal to the total residence time after
which the diffusion time over the striation thickness is equal to or smaller than the
already elapsed residence time.

From the first assumption, we estimated that the initial striation thickness is
approximately equal to the width of the microchannel, st(0) ∼ w, and that striation
thickness for later positions is determined by the equation st(n) = w×σ−n. Inserting
this definition of striation thickness into the equation for mixing purely by diffusion
(equation (1.1)), the time-scale for mixing by diffusion after n cycles is

tdiff(n) = w2 × σ−2n/2D. (8.1)

The time for transport by convection to complete n cycles was estimated to be

tconv(n) ∼ d(n)/U ∼ n × a × w/U. (8.2)

From the second assumption, we defined the mixing time tmix to be when the time-
scale for mixing by diffusion is equal to the time-scale for transport by convection
(Stroock et al . 2002b):

tconv(n) ∼ n × (a × w/U) ∼ w2 × σ−2n/2D = tdiff(n). (8.3)
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Figure 6. Schematic of a fluid element undergoing stretching, folding and reorientation, char-
acteristics of the baker’s transformation (top). Stretching and folding, as defined here, without
reorientation (bottom) does not lead to decrease of the striation thickness, demonstrating the
critical nature of the reorientation step.
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Figure 7. The baker’s transformation in plugs moving through a microfluidic channel. (a) Sche-
matic illustrating the principle: straight portions of the channel perform stretching and fold-
ing, and turns allow for reorientation. (b) Mixing as represented by a scheme of recirculating
flow in plugs moving through smooth turns (i) and sharp turns (ii). (c) Microphotographs
of the microfluidic network in which flow patterns inside plugs in different positions in the
microchannel demonstrate flow patterns reminiscent of the baker’s transformation. The aque-
ous streams were as in figure 1. The oil stream was 10:1 v/v perfluoro-1,3-dimethylcyclohexane
to 1H,1H,2H,2H-perfluoro-1-octanol. The streams were flowed at 53 mm s−1.

After rearrangement,
2a × n × σ2n ∼ w × U/D = Pe, (8.4)

where Pe is the Péclet number, defined as Pe = w × U/D.
The value of n is determined by taking the logarithm of both sides of equation (8.4)

and assuming large values of the Péclet number:

n ∼ log(Pe). (8.5)

We assume large Pe when deriving the argument to be able to state that log(n) is
much smaller than n × log(σ). By replacing the derived value of n in the equation
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Figure 8. Experimental data showing scaling of mixing by chaotic advection. (a) Left: schematic
of the design of the microfluidic network. Right: microphotograph of the plugs moving inside
the channel used to determine the scaling of chaotic mixing. The aqueous streams were as in
figure 1. The oil stream was as in figure 3a. (b) Mixing times tmix data plotted as a function of
(w/U) × log(Pe) as flow velocities U , cross-sectional dimensions of the microchannel w and the
diffusion coefficient of the reagents D were varied. (c) Data from (b) replotted versus (w/2)2/2D,
where st ∼ (w/2). From these data, it is observed that chaotic mixing is much faster than mixing
purely by diffusion (predicted mixing time purely by diffusion is shown by the dashed line with
a slope of 1). For (b) and (c), 90% mixing time, 90% tmix (s), was obtained from mixing profiles
as in figure 3b.

for transport by convection, the mixing time tmix,ca is defined:

tmix,ca ∼ tconv(n) ∼ (a × w/U) × log(Pe). (8.6)

The result that tmix,ca ∼ log(Pe) agrees with previous results for chaotic mixing
(Ottino 1994), including mixing in structured microchannels (Stroock et al . 2002b).

In order to test the scaling argument, we performed a series of experiments (Song
et al . 2003a) by independently varying flow velocity (U) by a factor of about 10, and
the width of the channel (w) by a factor of 10. The diffusion coefficient was varied
by a factor of about 10, and by quantifying mixing times using the Ca2+/fluo-4
binding (D ∼ 1.6 × 10−9 m2 s−1) and cleavage of a fluorogenic substrate by RNase
A (D ∼ 2 × 10−10 m2 s−1) (Stellwagen & Stellwagen 2002). We used a random,
general microchannel geometry shown in figure 8a. We plotted the intensity data
from these experiments according to equation (8.6) (figure 8b). Mixing times were
linearly related to (w/U) × log(Pe) as predicted by equation (8.6), in the range of
parameters tested.

The experimental value of tmix for chaotic mixing differs greatly from the mixing
time predicted for mixing purely by diffusion (the mixing times expected for mixing
purely by diffusion are shown by the dashed line in figure 8c). A measure of the
increase in effectiveness of chaotic mixing over diffusive mixing can be estimated
by dividing the time of mixing by diffusion by the time of mixing through chaotic
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advection:
tdiff/tmix = Pe/(a × log(Pe)). (8.7)

Chaotic advection mixes faster than diffusion alone by a factor of Pe/ log(Pe), which
has been shown previously for chaotic mixing (Ottino 1994). Chaotic advection
increases the effectiveness of mixing the most for systems with high Péclet num-
ber, for example reagents with lower diffusion coefficients, and in flows with high
flow rates inside large channels. It will not be as useful for accelerating mixing in
systems where striation thickness is already small (e.g. in hydrodynamic focusing),
but may offer complementary advantages in systems where slower, but complete
mixing of multiple reagents in known ratios is required.

9. Using the microfluidic platform to measure kinetics

This plug-based microfluidic network can be used to perform kinetic measurements
(Song & Ismagilov 2003). The system requires small amounts of reagents in order to
perform experiments because rapid mixing is induced at low values of Re without
resorting to turbulence, at flow rates of 10–100 nl s−1. Rapid mixing and transport
with no dispersion allows for accurate measurement of both fast and slow kinetic
reactions. Rapid on-chip dilution in this system allows one to change the concentra-
tion of the reagents by simply varying the relative flow rates of the stock solutions,
rather than replacing the stock solutions.

Understanding mixing quantitatively allowed us to incorporate mixing explicitly in
the form of a mixing function fm(t) into the kinetic model, so that kinetic parameters
can be extracted from the data with resolution higher than that limited by the mixing
time. As an example, we use a generic kinetic model for an enzymatic reaction
[P ] = F (k, [E]o, [S], t), where [P ] is the concentration of the product expressed in
terms of time t, the rate constant k, the initial concentration of the enzyme [E]o,
and the concentration of the substrate [S]. The main effect of mixing occurring over
a period of time tmix is to spread the beginning of the reaction over a period of time
tmix. This effect can be analysed by separating the tmix into small time-intervals.
During a small time-interval dτi = τi+1 − τi, a fraction of the reaction mixture
∆fm(τi) = fm(τi+1) − fm(τi) is mixed and begins to react with a time delay of τ .
This effect may be incorporated into the kinetic expression

[P (t)] =
∫ ∞

0
f ′
m(τ)F (k, [S], t − τ) dτ. (9.1)

This equation holds for simple kinetic models, but will not be correct for complex
kinetic models, especially those modelling autocatalytic reactions (Metcalfe & Ottino
1994).

The form of the mixing function used to describe mixing is not important in this
approach, as long as the derivative of the function can be found, and the function
reproduces an experimentally determined mixing curve, such as one shown in fig-
ure 3c. The ability to establish the mixing function experimentally is an attractive
feature of this system. We modelled mixing by a sigmoidal mixing function fm(t),

fm(t) = 1/(1 + α exp(−β(t − γ))), (9.2)

where the dimensionless parameter α corresponds to the extent of asymmetry of the
mixing curve, the parameter β (s−1) describes the sharpness of the mixing curve,

Phil. Trans. R. Soc. Lond. A (2004)



Kinetics using chaotic mixing in droplets 1101

and the parameter γ (s) corresponds to the averaged mixing time. For this mixing
function, fm(t = 0) = 0 and fm(t � tmix) = 1. The parameters were determined
by fitting an experimentally determined mixing curve that was rescaled (using equa-
tion (8.6)) to the difference in diffusion coefficients between the components of the
fluo-4/Ca2+ system used to measure mixing, and the components of the reaction for
which kinetics was being measured.

Using this combined model of mixing and kinetics, we are able to describe the
millisecond single-turnover kinetics of RNase A at pH = 7.5. For single-turnover
kinetics, the initial concentration of the enzyme greatly exceeds that of the substrate,
and the reaction can be described by the reaction equation:

[P (t)] = [S]o(1 − exp(−kt)). (9.3)

Using the fluo-4/Ca2+ system and then rescaling for the diffusion coefficient of the
enzyme, we obtained the mixing function shown in figure 9. This mixing function
was then incorporated into the kinetic model of the RNase A reaction:

[P (t)] = [S]o
∫ ∞

0
f ′
m(τ)(1 − exp(−k(t − τ))) dτ. (9.4)

Equation (9.4) was used to fit the experimental data shown in figure 9a to give good
fits with the rate constant of k = 1100 ± 250 s−1, in agreement with the previously
reported value (Thompson & Raines 1994). It is remarkable that such a fast rate con-
stant (the half-life of the reaction mixture is only 0.6 ms) can be measured accurately
and with high resolution in a system where mixing occurs on the same time-scale
as the reaction. To verify that the agreement between the kinetic measurement per-
formed on the microfluidic chip and the one previously reported is not coincidental,
we repeated the measurement at pH = 6.0. Using the same mixing function, the
rate constant of k = 350 ± 50 s−1 was obtained from the fit, in agreement with the
published pH dependence data for this reaction (Witzel 1963).

The fact that mixing occurs by chaotic advection is important for carrying out
these high-resolution kinetic measurements. A simple argument can be used to
demonstrate that the sharpness of mixing, rather than the total mixing time, is
the most important parameter that determines the resolution with which kinetic
parameters can be extracted from the data. The sigmoidal shape of a chaotic mixing
curve ensures that even though mixing begins at time t = 0 and continues until tmix,
the majority of mixing occurs over a time-interval ∆τ , where ∆τ < tmix. As mixing
occurs over a shorter ∆τ , the curve of the mixing function becomes steeper and
steeper (or ‘sharper’). At its limit, the mixing function fm(t) becomes Heaviside’s
step function θ(t − tmix). The derivative of this stepwise function is equal to Dirac’s
delta function (θ(t − tmix)′ = δ(t − tmix)). Rewriting equation (9.1) gives

[P (t)] =
∫ ∞

0
δ(τ − tmix)F (k, [S], t − τ) dτ. (9.5)

As δ(τ − tmix) is equal to zero everywhere except at tmix, the kinetic model simplifies
to

[P (t)] = F (k, [S], t − tmix). (9.6)

When mixing becomes infinitely sharp at time tmix, the kinetic model for the reaction
simplifies to the original kinetic model in which the time variable is shifted by the
term tmix.
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Figure 9. Using chaotic advection to measure millisecond single-turnover kinetics of RNase A at
a pH of 7.5 and a pH of 6.0. The mixing function, determined experimentally by the fluo-4/Ca2+

system and then rescaled, is represented by the open triangles and fit with a sigmoidal curve
(the dashed lines). (a) A graph of the experimental data (solid symbols) with fit produced
by equation (9.4) of the reaction progress (solid lines) for both pH 7.5 (blue solid squares) and
pH 6.0 (red solid triangles). (b) A graph of the experimental data (solid symbols) with the simple
fits produced by equation (9.6) of the reaction progress (solid lines) for both values of pH.

Chaotic advection is attractive in this respect because mixing is sharp. The 90%
mixing time is ca. 1.5 ms, but over 50% of the solution is mixed in only 0.4 ms, from
t = 0.4 ms to t = 0.8 ms. We have illustrated this fact by using the approximate
equation (9.6) to fit the experimental data using a time delay of 0.75 ms (experimen-
tally determined average mixing time is 0.72 ms) (figure 9b). We obtained adequate
fits for pH = 7.5 with the rate constant k = 1000 ± 300 s−1, similar to that obtained
from equation (9.4) using explicit treatment of mixing. Slower reaction at pH = 6.0
gave a good fit with the rate constant k = 350 ± 50 s−1, using the same time delay
of 0.75 ms. This argument suggests a somewhat counterintuitive point. Pre-mixing
(mixing before snap-off) of solutions—for example, mixing that occurs in the process
of twirling during the formation of the plugs—may slightly reduce total mixing time.
However, it is detrimental for high-resolution kinetic measurements when mixing is
performed by chaotic advection. It is likely to significantly broaden the mixing curve,
leading to a wide distribution of mixing times and less-resolved kinetic measurements.

10. Conclusion

In this work, we have learned that chaotic advection can be induced in plugs moving
through a variety of winding geometries as long as time-periodic flows are induced.
Winding channels created chaotic mixing by folding, stretching and reorienting the
fluid volume. Using a random, winding microchannel geometry, we have quantified
the scaling of chaotic mixing over at least a 10-fold range of channel widths, flow
velocities and diffusion coefficients, making it useful for a wide range of experiments.
We found that mixing by chaotic advection accelerated mixing most for systems
with a high Péclet number. This method of mixing did not rely on turbulence, and
required a small volume of sample; absence of dispersion further minimized the sam-
ple consumption, making this system attractive for performing kinetic experiments
with biological and other samples available in small quantities. Simple mathematical

Phil. Trans. R. Soc. Lond. A (2004)



Kinetics using chaotic mixing in droplets 1103

treatment was developed that incorporated mixing into kinetic models that extract
kinetic parameters with high resolution. The development of this system has been
driven by understanding the fascinating phenomena that occur in these multiphase
fluid flows inside microchannels. Deeper understanding, e.g. detailed predictive mod-
elling of the flows inside moving plugs, is certain to improve this system further.
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