Supporting Information for

Digital PCR on a SlipChip

Feng Shen, Wenbin Du, Jason E. Kreutz, Alice Fok, and Rustem F. Ismagilov

Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago,

929 E 57th St, Chicago, Illinois 60637

Derivation of Equation 1 to estimate template concentration:

The Poisson equation (Equation S1),

$$p = \left(\lambda^k \cdot e^{-\lambda}\right) / k! \tag{S1}$$

simplifies to $\mathbf{p}=\mathbf{e}^{-\lambda}$ when $\mathbf{k}=\mathbf{0}$, where \mathbf{p} is the probability of having \mathbf{k} particles in a well given λ , the average concentration of particles per well. The average concentration is different at each dilution factor, but λ can be found using the expression $\lambda=\mathbf{c}^*\mathbf{x}$, where \mathbf{x} is the dilution factor of the original concentration, \mathbf{c} . Using $\mathbf{s/n}$ as an estimator of \mathbf{p} , where \mathbf{s} is the number of negative wells, \mathbf{f} is the number of positive wells, and \mathbf{n} is the total number of wells (so $\mathbf{s}=\mathbf{n}-\mathbf{f}$), then Equation S2 is generated:

$$\frac{(n-f)}{n} = e^{-c \cdot x} \tag{S2}$$

This equation can be linearized by taking the natural logarithm (ln) of both sides to give Equation S1 (also Equation 1 in the main text)

$$Y = \ln(n - f) = -c \cdot x + \ln n$$
(83, 1)

The y-intercept then gives the number of wells, so can be used to test the suitability of the equation, or used to constrain the fit based on the known \mathbf{n} . The slope then gives the negative concentration in terms of particles/well.

Table	S1.	Number	of	positive	wells	in	each	quadrant	of	the	SlipChip	for	various
concentrations of genomic DNA and agreement with the 95% CI.													

]	Number o	of positiv	e	Score based 95%					
		wells in	quadrant		Average	CI ra	ange	Rounded 95% CI		
	Upper	Upper	Lower	Lower	# per	Lower	Upper	Lower	Upper	
1 fg/μL	Left	Right	Left	Right	quadrant	limit	limit	limit	limit	
Trial 1	0	1	1	1	0.75	0.11	5.17	0	5	
Trial 2	0	2	0	0	0.50	0.05	4.73	0	5	
Trial 3	0	0	1	0	0.25	0.01	4.28	0	4	
Trial 4	0	0 0		1	0.50	0.05	4.73	0	5	
10 fg/µL										
Trial 1	3	5	5	4	4.25	1.70	10.49	2	10	
Trial 2	5	4	3	0^*	3.00	1.02	8.70	1	9	
Trial 3	5	3	3	0^*	2.75	0.90	8.33	1	8	
100 fg/µL										
Trial 1	24	21	22	16	20.75	13.66	31.14	14	31	
Trial 2	18 22		19	26	21.25	14.06	31.73	14	32	
Trial 3	19	13	15	24	17.75	11.28	27.59	11	28	
1 pg/μL										
Trial 1	154	159	159	151	155.75	138.38	173.22	138	173	
Trial 2	151	145	135	140	142.75	125.63 160.28		126	160	
Trial 3	131	140	152	148	142.75	125.63	160.28	126	160	

*These values fell outside the CI.