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ABSTRACT: This review focuses on how the mechanistic approach of physical organic chemistry can be used to
elucidate the mechanisms behind complex biochemical networks. The dynamics of biochemical reaction networks is
difficult to describe by considering their individual reactions, just as the dynamics of organic reactions is difficult to
describe by considering individual electrons and atomic nuclei. Physical organic chemists have developed a useful set
of tools to predict the outcome of organic reactions by separating the interacting molecules into modules (functional
groups), and defining general rules for how these modules interact (mechanisms). This review shows how these tools of
physical organic chemistry may be used to describe reaction networks. In addition, it describes the application of these
tools to develop a mechanistic understanding of the dynamics of the complex network of hemostasis, which regulates
blood clotting. Copyright # 2007 John Wiley & Sons, Ltd.
KEYWORDS: coagulation; microfluidics; spatiotemporal dynamics; complexity; nonlinear; enzyme models; networks;

modules
INTRODUCTION

This review describes a mechanistic approach to
understanding the spatiotemporal dynamics of complex
reaction networks. Biochemical reaction networks per-
form a wide range of functions indispensable for the
existence of living organisms, from energy conversion,
self-regulation, and computation, to signal detection and
amplification. Understanding the mechanisms by which
biochemical reaction networks perform their function
is currently the focus of a major research effort and a
primary goal of the field of systems biology.1 However,
the inherent complexity of these networks makes theo-
retical and experimental characterizations of their under-
lying mechanisms challenging for two reasons: these
networks comprise a large number of reactions, not all of
which are typically known, and the dynamics in these
systems is spatially heterogeneous and time-dependent.
Therefore, we have developed a two-fold strategy to study
complex systems. We begin by reducing the complexity
of the network by using a physical organic approach
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to develop a simple chemical model of the complex
network. Then, we utilize microfluidics2,3 and patterned
surfaces4,5 to experimentally probe the chemical model
and the biochemical network, which allows control and
manipulations of reactions on the length and timescales
relevant for biochemical reaction networks. This review
focuses on the first component of our strategy—the
mechanistic approach to understanding the spatiotem-
poral dynamics of a complex reaction network.

APPLYING PHYSICAL ORGANIC
APPROACHES TO COMPLEX SYSTEMS

The success of physical organic chemistry provides
motivation to apply its tools to other fields, including
systems biology. At first glance, the connection between
physical organic chemistry and the study of reaction
networks may not be obvious, but these two fields are
conceptually parallel. The mechanisms of organic reac-
tions are a result of the complex interactions among a
set of components—the atomic nuclei and electrons of
the organic molecules. One may use the Schrödinger
equation to describe these interactions, but solving this
equation to describe realistic reactions in polar solvents is
not easy, even with today’s computer power. Similarly,
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Figure 1. Amodular mechanism for the threshold response
in blood clotting may account for the dynamics at sites of
vascular damage. (a) A threshold response to clotting based
on the size of a patch of vascular damage (green) has been
postulated, in which small patches of damage do not initiate
clotting and large patches do initiate clotting (yellow). (b) A
rate plot for the proposed modular mechanism for the
threshold response.11 Three rate equations, one for each
module, are graphically represented (brown, gray, and blue
curves). The reaction rate for each equation is plotted against
the concentration of activators of clotting, [C]. The inter-
action between two modules, autocatalytic production of C
(brown line) and linear consumption of C (gray line), creates
two steady states in the system, which is the basis for the
threshold response. Reprinted with permission from refer-
ence 11 with minor modifications. Copyright 2004
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This
figure is available in colour online at www.interscience.
wiley.com/journal/poc
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the function of networks is also a result of the complicated
interactions among a set of components—biochemical
reactions. Differential equations may be written to
describe these systems, but solving these equations is
also difficult because of kinetics with time delays, highly
nonlinear interactions among many components, and
compartmentalization. In addition, for many biological
and chemical networks, new players are constantly being
discovered.6,7 Therefore, we wished to capitalize on this
parallelism to help uncover the mechanisms by which
reaction networks operate.

Physical organic chemists have developed an approach
that has been surprisingly successful for elucidating and
predicting the mechanisms of organic reactions. Rather
than treating molecules as an interacting set of electrons
and nuclei and then solving the Schrödinger equation,
this approach first separates molecules into modules—
functional groups, such as thiols and carbonyls. The
functional groups are further categorized into classes,
such as nucleophiles and electrophiles. Then, general
descriptions of the interactions of the functional groups in
a reaction are developed—reaction mechanisms, such as
the cycloaddition and the SN2 substitution mechanisms.
This approach is powerful because the knowledge gained
by studying functional groups and mechanisms in one
set of molecules and reactions is transferable to other
molecules and reactions.

We applied this approach to elucidate the mechanisms
governing complex networks. In networks, it is likely that
groups of interacting reactions are actually functioning
together as modules, as has been proposed.8–10 It is also
likely that the interaction of these modules constitutes
the basic mechanism for the network’s function. In
addition, these modules and mechanisms may be
generally applicable to other networks, as many networks
share similar dynamics, such as threshold responses,
amplification, oscillations, and hysteresis.

DEVELOPING A MODULAR MECHANISM
FOR HEMOSTASIS

We used this mechanistic approach as a basis for our
investigations of the complex network of hemostasis, which
regulates blood clotting (also called blood coagulation).
Specifically, we focused on initiation of blood clotting and
on the threshold dynamics of this system. Like many
complex networks, key molecular players in hemostasis are
known, but many overall properties of the network are not
understood. Elucidating the general mechanism by which
the network operates may shed light on how clotting is
initiated on areas of significant vascular damage and not on
small areas of damage, which are believed to be present
throughout the vascular system (Figure 1a). A general
mechanism may also explain how clotting, once initiated,
remains localized to regions of damage without spreading
throughout the vascular system.
Copyright # 2007 John Wiley & Sons, Ltd.
Utilizing the physical organic ideas described above,
we simplified the complex network of hemostasis by
reducing the �80 reactions of clotting into three
interacting modules.11 Each of the three modules was
assigned a corresponding rate equation, which are graphi-
cally represented in a rate plot (Figure 1b), and, together,
describe the threshold response of initiation of clotting. In
this mechanism, one module autocatalytically produces
an activator of clotting, C; a second module linearly
consumes C; and a third module forms a solid clot at high
[C]. Competition between production and consumption
of activators creates three steady states in the system
J. Phys. Org. Chem. 2007; 20: 711–715
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(two are shown), which leads to a threshold response to
[C]. For small areas of vascular damage, [C] does not
exceed the threshold [C], [C]thresh, and clotting does not
occur. For large areas of vascular damage, [C] exceeds
[C]thresh, and clotting occurs.
Figure 2. ‘‘Clotting’’ in the chemical model shows a thres-
hold to stimulus patch size.24 (a) Schematic showing that
over time the chemical model initiates ‘‘clotting’’ (yellow) on
large patches (green) that produce Hþ, the stimulus of
‘‘clotting’’ in the model. (b) Time-lapse fluorescence micro-
graphs showing clotting on large patches, but not small
patches. (c) Graph quantifying the threshold response of
initiation of ‘‘clotting’’ to stimulus patch size in the chemical
model. Reprinted with permission from reference 24.
Copyright 2006 National Academy of Sciences, USA. This
figure is available in colour online at www.interscience.
wiley.com/journal/poc
TESTING THE MODULAR MECHANISM

To experimentally test this modular mechanism, we
utilized an additional physical organic approach—we
built a chemical model. Chemical models have been
used to advance our understanding on a broad scale of
complexity, from the reactivity of organic molecules12

and the functions of enzymes13–17 to spatiotemporal
dynamics of catalysis,18 oscillations in chemistry19 and
biology,20 oocyte development,21 and fibrillation in
myocardium.22 Importantly, the ability of the chemical
model to reproduce and predict the properties of blood
clotting would strongly support the proposed modular
mechanism for hemostasis.

To build this model, we substituted one reaction for
eachmodule, for a total of three reactions.11 Each reaction
had the same overall kinetics as the proposed module.
In the chemical model, the autocatalytic production and
linear consumption modules were represented by the
chlorite–thiosulfate reactions,23 which autocatalytically
produced and also consumed H3O

þ. The precipitation
module was represented by the precipitation of alginic
acid from alginate under acidic conditions, which is
representative of ‘‘clotting.’’

To test if this chemical model of the network of
hemostasis operated by the same mechanism as the one
we proposed for the threshold response in blood clotting,
we exposed the chemical model to surface patches of
clotting stimulus of various sizes.24 As was postulated for
clotting of human blood, ‘‘clotting’’ in the chemical
model showed a threshold response to patch size, where
‘‘clotting’’ occurred on large patches, but not on small
patches (Figure 2). This dynamics of the chemical model
was rationalized by considering reaction-diffusion equa-
tions and competition between production of activators
from the patch and diffusion of activators away from the
patch. This competition between production and diffusion
is described by the Damköhler number,25 Da¼ tD/tr,
where tD [s] is the timescale for diffusion of activators
from the center to off of the patch, and tr [s] is the time
scale for the production of activator at the patch. For small
patches, Da is small and diffusion out-competes produc-
tion. Diffusion of activators off the patch is fast, and the
concentration of activators necessary to initiate clotting
([C]thresh) is not produced. For large patches, Da is large
and production out-competes diffusion. Diffusion of
activators from the center of the patch to outside the patch
is slower than the time it takes for the concentration of
activators to reach the threshold. Based on this analysis,
the threshold patch size, ptr [m], can be predicted by
Copyright # 2007 John Wiley & Sons, Ltd.
the equation, ptr� (D� tr)
1/2, where D [m2s�1] is the

diffusion coefficient of the activator. Using this equation,
the experimental threshold patch size could be predicted
within a factor of �2 for the chemical model.

To test whether the chemical model described
the dynamics of the real biological system, we tested
the clotting of human blood plasma on patches of
stimulus.24,26 Clotting of human blood plasma showed a
threshold response to patches of stimulus of different sizes,
where the stimulus was either a lipid bilayer27 containing a
reconstituted enzyme (tissue factor28) or hydrophilic glass
(Figure 3). Surprisingly, the experimental threshold patch
size for human blood plasma could also be predicted
within a factor of �2 by using the same simple scaling
equation developed for the chemical model.
CONCLUDING REMARKS

This mechanistic approach of reducing the complex
network into a modular mechanism appears to work, at
least for blood clotting in vitro. Reducing the complex
network of hemostasis into modules allowed us to
J. Phys. Org. Chem. 2007; 20: 711–715
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Figure 3. Clotting of human blood plasma displays a threshold response to the size of patches containing a stimulus.24 (a)
Schematic showing that over time blood will clot (blue) on large patches (white) of stimulus. In this experiment, the stimulus was
hydrophilic glass. (b) Time-lapse fluorescence micrographs showing clotting on large patches, but not small patches. Reprinted
with permission from reference 24. Copyright 2006 National Academy of Sciences, USA. This figure is available in colour online
at www.interscience.wiley.com/journal/poc
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identify a possible modular mechanism for the threshold
response of initiation of blood clotting. By building a
simple, experimental chemical model based on this
modular mechanism, we were able to reproduce and
predict properties of the hemostasis network, suggesting
that the modular mechanism is reasonable. In this review,
we have argued that the mechanisms of complex networks
can be elucidated by using a physical organic approach.
There are two main criteria that must be satisfied
to conclusively validate this approach. First, it must
be shown that mechanisms for one network can be
determined using this method. Here, we satisfied part
of this criterion by showing that predictions based on
the proposed mechanism for the complex network of
hemostasis could be made and verified in a simple in vitro
system. However, in order to conclusively show that this
mechanism is physiologically relevant, more experiments
must be done, especially experiments involving flow
and experiments in vivo.29 A future in vivo experiment
demonstrating the existence of a threshold response to
patch size for patches of a stimulus, either tissue factor,
collagen, or some other stimulus, would strongly support
the proposed mechanism. Second, modules and mech-
anisms of one reaction network must prove to be
transferable to other networks, just as the functional
group properties and reaction mechanisms of organic
molecules can be transferred from one set of molecules to
another. Several other reaction networks have groups of
autocatalytic reactions leading to threshold responses,
such as networks of apoptosis and quorum sensing. These
networks may be described by a modular mechanism
similar to the one we proposed for hemostasis. Additional
experiments must be conducted to test this hypothesis.

In addition to investigating the dynamics of specific
biological networks, the techniques described in this
review have the potential for investigating other aspects
of reaction networks as well. The combination of micro-
fluidics and nonlinear chemical systems may be used
to engineer artificial systems that perform the functions
of complex biological networks. For example, we
previously used microfluidics to build a synthetic reaction
Copyright # 2007 John Wiley & Sons, Ltd.
network that performed chemical 5000-fold amplification
of autocatalysts with a threshold response.30 This
synthetic reaction network has similarities to the chemical
model for hemostasis in that competition between pro-
duction of autocatalytic species and the removal of these
species by transport determines whether or not the system
produces a response. We also used these principles to
design systems that can detect low quantities of specific
chemicals30 and systems that can control nucleation and
growth of protein crystals.31 These types of synthetic
networks have also been used previously to understand
molecular connectivity and mechanisms within complex
reaction networks.32,33 Combining engineered reaction
networks with micro-scale technologies has broad
potential applicability to both understanding complex
networks and to the engineering of artificial systems.

We envision that this general approach of reducing the
complexity of networks with a modular mechanism and
model may be useful for understanding the mechanisms
in complex networks performing other functions as well.
Currently, we are applying these ideas to the study of
embryonic development.34 This approach for elucidating
a mechanism in blood clotting was based on principles of
physical organic chemistry. We find it exciting that these
approaches developed for physical organic chemistry
may be general and used for elucidating the mechanisms
of reactions as well as the mechanisms of other types of
chemical processes.
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