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two-phase wash to solve the 
ubiquitous contaminant-carryover 
problem in commercial nucleic-acid 
extraction kits
erik Jue 1, Daan Witters 2 & Rustem f. ismagilov 1,2*

the success of fundamental and applied nucleic acid (nA) research depends on nA purity, but obtaining 
pure NAs from raw, unprocessed samples is challenging. Purification using solid-phase NA extractions 
utilizes sequential additions of lysis and wash buffers followed by elution. The resulting eluent contains 
NAs and carryover of extraction buffers. Typically, these inhibitory buffers are heavily diluted by the 
reaction mix (e.g., 10x dilution is 1 µL eluent in 9 µL reaction mix), but in applications requiring high 
sensitivity (e.g., single-cell sequencing, pathogen diagnostics) it is desirable to use low dilutions (e.g., 
2x) to maximize NA concentration. Here, we demonstrate pervasive carryover of inhibitory buffers into 
eluent when several commercial sample-preparation kits are used following manufacturer protocols. 
At low eluent dilution (2–2.5x) we observed significant reaction inhibition of polymerase chain reaction 
(PCR), loop-mediated isothermal amplification (LAMP), and reverse transcription (RT). We developed 
a two-phase wash (TPW) method by adding a wash buffer with low water solubility prior to the elution 
step. The TPW reduces carryover of extraction buffers, phase-separates from the eluent, and does not 
reduce nA yield (measured by digital pcR). We validated the tpW for silica columns and magnetic beads 
by demonstrating significant improvements in performance and reproducibility of qPCR, LAMP, and RT 
reactions.

Polymerase chain reaction (PCR) is a widely used tool in molecular biology for generating many nucleic acid 
(NA) copies from a starting DNA template. PCR may also be combined with reverse transcription (RT) to amplify 
many DNA copies from a starting RNA template. The amplified NAs then serve different purposes, such as detec-
tion, quantification, library preparation for sequencing, or generating constructs for cloning1,2. NA amplification 
is crucial in highly sensitive applications (few DNA copies) such as single-cells analyses or the detection of SNPs, 
cell-free circulating DNA, or pathogens3–5. Isothermal amplifications are an attractive alternative to PCR that 
eliminate the stringent temperature cycling requirements6. Specifically, loop-mediated isothermal amplification 
(LAMP) is faster than PCR and is especially promising for diagnostic devices in point-of-care settings7,8. PCR, 
RT, and LAMP typically require purified NAs as starting template; however, extracting purified NAs from raw, 
unprocessed samples is challenging9. Though commonly overlooked, the efficient and effective extraction of pure 
NAs is of paramount importance10.

A primary function of NA extractions is to eliminate inhibitors. If inhibitors are transferred into the eluent, 
they can delay or completely inactivate downstream applications such as PCR and LAMP11,12. Inhibitors have also 
been implicated in failed RT, molecular cloning, and sequencing experiments13–15. We anticipate two potential 
sources of inhibitors: (1) those present in the raw, unprocessed sample and (2) those introduced during the NA 
extraction16. There have been numerous studies demonstrating the adverse effects of inhibitors in challenging 
sample matrices, such as humic acids, food particles, cellular debris, urine, blood, and stool11,12,17–25. To remove 
these inhibitors, solid-phase extractions are an effective choice because they have been found to yield higher 
purity compared with other extraction methods19,20,26–29. The two most common solid-phase extraction methods 
use either spin columns or magnetic beads28,30. In both methods, the sample is first mixed with a lysis/binding 
buffer, the lysed sample contacts the solid phase allowing NAs to bind, the solid phase is cleansed with one or 

1Division of Biology and Biological Engineering, California Institute of Technology 1200 E. California Blvd., Pasadena, 
CA, 91125, United States. 2Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. 
California Blvd., Pasadena, CA, 91125, United States. *email: rustem.admin@caltech.edu

open

https://doi.org/10.1038/s41598-020-58586-3
http://orcid.org/0000-0001-7585-3794
http://orcid.org/0000-0003-2179-5300
http://orcid.org/0000-0002-3680-4399
mailto:rustem.admin@caltech.edu


2Scientific RepoRtS |         (2020) 10:1940  | https://doi.org/10.1038/s41598-020-58586-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

more wash buffers, and the NAs are eluted with water. Typically, the lysis/binding buffer contains a chaotropic 
salt (e.g., guanidinium isothiocyanate) whereas the wash buffer contains a high concentration of ethanol (or iso-
propanol). Any carryover of these extraction buffers (lysis buffer or wash buffer) into the eluent could be greatly 
inhibitory to downstream analyses.

The purified eluent contains NAs and any carried-over extraction buffers at their highest concentration. To 
run a downstream reaction, a volume of eluent is mixed with a volume of reaction mix. For research applications, 
it is standard to dilute the eluent 10x (e.g., 1 µL eluent and 9 µL reaction mix)31,32, 25x (e.g., 1 µL eluent and 24 µL 
reaction mix)33, or more34,35. At these high eluent dilutions, concentrations of inhibitors present in the eluent are 
reduced and thus their potential negative effects on the reaction are mitigated. However, the dilution of inhib-
itors equally dilutes the NAs, which may be detrimental when the original sample has low NA concentrations3 
and/or when high sensitivity is desired. For example, single nucleotide polymorphisms5, cell-free circulating 
DNA4, and single-cell analyses all require maximizing the concentration of NA loaded into the amplification 
mix. Maximizing NA concentration is also important for infectious disease diagnostics and monitoring the 
water supply, food supply, and environment32,36–38. For these applications, a higher NA concentration could be 
achieved with a lower dilution (e.g., a 2.5x dilution would be 4 µL eluent and 6 µL reaction mix). The theoretical 
maximum NA concentration could be attained by eliminating the dilution altogether, which is only possible by 
adding eluent directly to a dried reaction mix (e.g., 10 µL eluent and dry reaction mix to make ~10 µL reaction). 
This can be achieved with lyophilization, wherein reagents are freeze-dried to a powder, or other approaches for 
generating dry reaction mixes. The use of dry reagents has additional benefits: simple assay protocols, lenient 
reagent-storage conditions, and long reagent shelf-life, all of which are desirable characteristics for the develop-
ment of point-of-care devices. However, in using low dilutions or no dilution, extraction buffers in the eluent are 
used at higher concentrations which may have adverse effects on downstream reactions.

Few studies have directly investigated inhibition resulting from solid-phase extraction kit buffers39,40. In this 
manuscript, we aimed to quantify and reduce inhibition arising from buffer carryover in commercial extraction 
kits from well-known suppliers. We first identified that kit buffer carryover is indeed a concern when using low 
eluent dilutions (≤2.5x) for both commercial silica-column and magnetic-bead extractions (following manu-
facturer protocols). To improve our understanding of inhibition, we performed a detailed study using a range 
of buffer dilutions from different extraction kits. To address the carryover of kit buffers, we developed modified 
extraction protocols utilizing an additional two-phase wash (TPW) that would integrate easily with the existing 
manufacturer protocols41. The TPW is a compound with low water solubility, can be added in between the wash 
and elution steps, and it phase-separates with water after the elution step. We identified an optimized set of TPW 
candidates among several potential compounds and then evaluated TPW performance by testing kit protocols 
from leading manufacturers (Zymo and Qiagen) at both low and high eluent dilutions. To unambiguously show 
that inhibition is due to kit buffer inhibitors, as opposed to sample inhibitors or losses of NAs, we performed 
extractions on pure water samples with or without the TPW, and added the resulting kit extract to spiked qPCR, 
LAMP, and RT assays.

Materials and Methods
nA stocks and primers. Lambda (λ) phage DNA (linear double-stranded 500 µg/mL, N3011L, New 
England Biolabs (NEB)) was purchased from NEB and the stock was quantified at 1.1 × 1010 cp/µL using digital 
PCR (dPCR). Escherichia coli DNA was extracted from an NEB 5-alpha strain using Epicentre QuickExtract DNA 
Extraction Buffer (Lucigen Corporation,Middleton, WI, USA) and the stock was quantified at 1.4 × 107 cp/µL 
using dPCR. Neisseria gonorrhoeae live infectious stock (Z017, Zeptometrix, Buffalo, NY, USA) was resuspended 
to 5 × 107 cfu/mL in pre-warmed (37 °C) Hardy Diagnostics FB Broth (K31, Hardy Diagnostics, Santa Maria, 
CA, USA) and diluted an additional 10-fold in urine to 5 × 106 cfu/mL. Urine from healthy human donors (>18 
years of age) was acquired and used in accordance with approved Caltech Institutional Review Board (IRB) pro-
tocol 15–0566. Informed consent was obtained from all participants. Urine sample donations were never tied to 
personal identifiers and all research was performed in accordance with the approved IRB protocol and relevant 
institutional biosafety regulations. Urine samples were stored at room temperature and used within 1 h of collec-
tion. Spiked urine (125 µL) was mixed with DNA/RNA Shield (125 µL) and lysis buffer (500 µL) for a total lysed 
sample volume of 750 µL. Both DNA and RNA were extracted simultaneously with a ZR Viral DNA/RNA Kit, 
and N. gonorrhoeae 16S RNA was found to be in over 200-fold excess of 16S DNA as verified by dPCR with or 
without an RT step. All NA stocks were diluted at least 100-fold into all reactions, thereby eliminating the effects 
of any inhibitors that could be present in the NA stock. Lambda LAMP primers42, Lambda PCR primers43, E. coli 
23S rRNA gene LAMP primers44, E. coli 23S rRNA gene PCR primers45, and N. gonorrhoeae 16S rRNA gene PCR 
primers46 have been previously published and were supplied by Integrated DNA Technologies using standard 
desalting purification.

Kit extractions. We tested three different silica-column kits: Zymo ZR Viral DNA/RNA Kit (outdated pro-
tocol, D7021), Zymo Quick-DNA/RNA Kit (updated protocol, D7021), and the QIAquick PCR Purification 
Kit (28104, Qiagen). For all silica-column kits, fresh collection tubes were used after each spin and centrifu-
gation speeds were set to 16,000 × g. Centrifugation was performed on either an Eppendorf 5415D centrifuge 
(Eppendorf, Hauppauge, NY, USA) or a Thermo Fisher Scientific AccuSpin Micro 17 R centrifuge (13–100–676). 
We note that the QIAquick protocol calls for 17,900 × g, but we instead ran at 16,000 × g which was the max speed 
for the Eppendorf 5415D. For both Zymo kits, 750 µL lysed sample was prepared by mixing 125 µL sample with 
125 µL Zymo 2x DNA/RNA Shield and 500 µL Viral DNA/RNA Buffer. For the Zymo ZR Viral DNA/RNA kit, 
750 µL lysed sample was centrifuge for 1 min, 500 µL Zymo Viral Wash Buffer was centrifuged for 2 min, and 50 µL 
nuclease-free water was centrifuged for 30 s into a clean 1.5 mL tube. Optionally, either a dry spin or 300 µL TPW 
was centrifuged for 2 min in between the Viral Wash Buffer and elution steps. For the Zymo Quick-Viral DNA/
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RNA kit, 750 µL lysed sample was centrifuged for 1 min, 500 µL Zymo Viral Wash Buffer was centrifuged for 30 s, 
an additional 500 µL Zymo Viral Wash Buffer was centrifuged for 30 s, 500 µL 200 proof ethanol was centrifuged 
for 1 min, and 50 µL nuclease-free water was centrifuged for 30 s into a clean 1.5 mL tube. Optionally, either a 
dry spin or 300 µL TPW was centrifuged for 1 min in between the ethanol and elution steps. For the QIAquick 
PCR Purification Kit, 125 µL sample was mixed with 625 µL Buffer PB without indicator. 750 µL lysed sample was 
centrifuged for 30 s, followed by 750 µL Buffer PE for 30 s, a dry spin for 1 min, and 50 µL nuclease-free water for 
1 min. Optionally, the dry spin was skipped or the dry spin was replaced with a 300 µL TPW and centrifuged for 
1 min.

We tested the Zymo Quick-DNA/RNA Viral MagBead kit (R2140). For the Zymo MagBead kit, 200 µL sample 
was mixed with 200 µL Zymo 2x DNA/RNA Shield, 4 µL Proteinase K, and 800 µL Zymo Viral DNA/RNA Buffer. 
1204 µL was added to each tube, mixed with 20 µL MagBinding Beads, and placed on an UltraRocker Rocking 
Platform (1660709EDU, Bio-Rad, Hercules, CA, USA) for 10 min at max speed. Tubes were transferred to a 
DynaMag-2 magnetic rack (12321D, Thermo Fisher Scientific) and we followed manufacturer instructions for the 
remainder of the protocol. Optionally, the 10 min dry step was skipped or the dry step was instead replaced with 
the addition of 500 µL TPW. In the modified protocol for the Zymo MagBead kit, we waited at least one additional 
minute and perform a second aspiration after each aspiration step in the manufacturer’s protocol.

qpcR mix. qPCR reactions contained 1X Bio-Rad SsoFast Supermix (1725201, Bio-Rad), PCR primers (IDT) 
at 0.5 µM each, and were supplemented with nuclease-free water up to 10 µL. Each 96-well plate (thin-wall clear 
well, HSP9641, Bio-Rad) was sealed (Microseal B, MSB1001, Bio-Rad) and briefly spun in a Mini Plate Spinner 
Centrifuge (14-100-141, Fisher Scientific). Heating and real-time imaging were performed on the Bio-Rad CFX-
96 Touch Real-Time PCR Detection System by heating to 95 °C for 5 min, cycling 40 times between 95 °C for 15 s, 
60 °C for 15 s, and 72 °C for 20 s, and taking a melt-curve analysis. For the E. coli DNA dilution experiment, qPCR 
was run for 60 cycles. Fluorescence readings were taken at the end of each extension step. Quantification cycle 
(Cq) was determined when the software’s automated baseline corrected fluorescence reached 200 RFU.

LAMP mix. LAMP reactions contained the following concentrations of reagents: 1X Isothermal Amplification 
Buffer (20 mM Tris-HCl pH 8.8, 10 mM (NH4)2SO4, 50 mM KCl, 5 mM MgSO4, 0.1% Tween-20, B0537S, NEB, 
Ipswich, MA, USA), an additional 2 mM MgSO4 (B1003S, NEB), 1.4 mM deoxynucleotide mix (N0447L or 
N0446S, NEB), 2 µM Invitrogen Syto-9 (S34854, Thermo Fisher Scientific), 2 µM Invitrogen bovine serum albu-
min (15561020, Thermo Fisher Scientific), 320 U/mL WarmStart Bst 2.0 (M0538L, NEB), and were supplemented 
with nuclease-free water (not DEPC-Treated, 4387936, Thermo Fisher Scientific) up to 10 µL. LAMP primers 
(Integrated DNA Technologies (IDT), Coralville, IA, USA) were designed, ordered, and added at NEB’s recom-
mended concentrations of 1.6 µM FIP/BIP, 0.2 µM F3/B3, and 0.4 µM LoopF/B. Each 96-well plate was sealed 
and briefly spun. Heating and real-time imaging were performed on the Bio-Rad CFX-96 Touch Real-Time PCR 
Detection System (1855195, Bio-Rad). Each 96-well plate was cooled to 12 °C for 2 min, held at 68 °C for 47 min 
with 35-second fluorescence read intervals, and we performed a melt-curve analysis. For the E. coli DNA dilution 
experiment, the 68 °C step was held for 105 min. Time-to-positive (TTP) was determined when the software’s 
automated baseline corrected fluorescence reached 1000 RFU.

Buffer inhibition. For studying kit buffer inhibitors, LAMP and qPCR reactions were spiked to 5 × 104 cp/
rxn λ phage DNA (NEB) and supplemented with half-log dilutions of either Koptec 200-proof ethanol (V1001, 
Decon Labs, King of Prussia, PA, USA), Viral RNA Wash Buffer 1x (R1034-2-48, Zymo Research, Tustin, CA, 
USA), Buffer PE (19065, Qiagen, Germantown, MD, USA), Zymo DNA/RNA Shield 1x (R1200-125), Zymo 
Viral DNA/RNA Buffer (D7020-1-100), or Qiagen Buffer PB (19066) to the appropriate final concentration. 
For selecting the optimal TPW, LAMP and qPCR reactions were spiked with 1 µL of 5 × 104 cp/µL λ phage 
DNA, diluted to 10 µL, and an additional 1 µL was added of either nuclease-free water, 200 proof ethanol, iso-
propanol (BP2618-500, Thermo Fisher Scientific, Waltham, MA, USA), 1-butanol (3000-04, Mallinckrodt 
Chemicals), isopentanol (2992-04, Mallinckrodt Chemicals), 1-hexanol (H13303–100 mL, MilliporeSigma, 
St. Louis, MO, USA), 1-heptanol (H2805-250 mL, MilliporeSigma), 1-octanol (SHBH2844V, MilliporeSigma), 
1-nonanol (131210–100 mL, MilliporeSigma), 1-decanol (2397563–50 g, MilliporeSigma), 1-undecanol 
(MKCG3271, MilliporeSigma), 2-dodecanol (D221503-5G, MilliporeSigma), 5 cSt silicone oil (317667-250 mL, 
MilliporeSigma), or Fluorinert FC-40 (ZF-0002-1308-0, 3 M, St. Paul, MN, USA).

dpcR mix. Droplet digital PCR (dPCR) experiments were performed on a Bio-Rad QX200 Droplet Digital 
PCR System (1864001, Bio-Rad). dPCR mixes were made with 1X QX200 dPCR EvaGreen Supermix (1864034, 
Bio-Rad), 200 nM forward primer, and 200 nM reverse primer. Eluent was diluted 10x in separate tubes and an 
additional 10x into the reaction mix. All samples were made to 50 µL and duplicates were run by adding 22 µL 
to two sample wells in the DG8 Cartridge for droplet generator (1864008, Bio-Rad). Droplet generation, drop-
let transfer, and foil sealing followed manufacturer’s instructions. Thermocycling took place on a C1000 Touch 
Thermal Cycler (Bio-Rad) with a pre-melt at 95 °C for 3 min, 40 cycles of 95 °C for 30 s, 60 °C for 30 s, and 68 °C for 
30 s, and a stabilization at 4 °C for 5 min, 90 °C for 5 min, and a hold at 12 °C until droplet analysis. A temperature 
ramp rate of 2 C/s was used for temperature transitions. Droplets were read according to manufacturer instruc-
tions. Analysis thresholds were manually set at the valley between negative and positive droplets. Final concentra-
tions were determined using the merge setting on the QuantaSoft analysis software. No template controls (NTC) 
were always run and showed negligible normalized counts (<0.1%).

Rt mix. The RT reaction contained 1X Isothermal Amplification Buffer, 0.5 mM dNTP Mix, 0.2 µM primers, 
1 U/µL Riboguard RNase Inhibitor (RG90910K, Lucigen, Middleton, WI, USA), and 0.15 U/µL WarmStart Rtx 
(M0380L, NEB). The extracted N. Gonorrhoeae RNA was diluted 10x in a separate tube and an additional 10x by 
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adding 2.5 µL into the 25 µL reaction mix (100x dilution total). Kit extracts were spiked in the reaction mix by 
adding either 2.5 µL (10x) or 12.5 µL (2x). We added water to a total reaction volume of 25 µL. Temperature was 
set to anneal for 5 min at 25 °C, incubate for 10 min at 55 °C, and inactivate for 10 min at 80 °C in a C1000 Touch 
Thermal Cycler (1851196, Bio-Rad).

Results and Discussion
Establishing the presence and prevalence of inhibitors in buffers. We first carefully designed an 
experiment to evaluate the presence, prevalence, and effects of buffer carryover when using standard commercial 
NA extraction kits. To eliminate the confounding effects of NAs or inhibitors originating from the sample, we 
performed NA extractions on pure water samples (Fig. S1). When extracting from pure water samples, we refer to 
the eluent as the “kit extract,” which only contains water and inhibitors originating from buffers in the extraction 
kits. Here, we tested a centrifugation-based NA extraction using a Zymo ZR Viral DNA/RNA Kit and followed the 
manufacturer’s protocol. Next, we mixed the kit extract into a qPCR reaction spiked with λ phage DNA at either 
a 10x dilution (1 µL kit extract, 0.5 µL template DNA, 8.5 µL reaction mix) or 2.5x dilution (4 µL kit extract, 0.5 µL 
template, 5.5 µL reaction mix). We used heavily diluted purified λ phage DNA to ensure no inhibition originated 
from the template. The 10x and 2.5x dilution reactions contain different volumes of kit extract, but each had a 
final volume of 10 µL and contained the same concentration of λ phage template, λ phage primers, and qPCR 
components. We ran qPCR on a thermocycler for 40 cycles while taking readings at the end of each cycle. If the 
kit extracts have no inhibitory effect, we would expect the same quantification cycle (Cq) for both reactions. Given 
the amount of input DNA (5 × 104 copies), we expect amplification to occur at ~20 cycles.

Using the centrifugation sample-preparation protocol (Fig. 1a) and a 2.5x dilution of kit extract, amplifica-
tion in qPCR was completely inhibited (Fig. 1c). In contrast, using the 10x dilution, all three kit extracts (three 
separate columns) amplified at ~20 cycles as expected. The only variable that differed between the two conditions 
was that the 2.5x dilution (4 µL kit extract) contained four times the concentration of buffer compared with the 
10x dilution (1 µL kit extract). This result led us to conclude that carryover of inhibitory buffers is inhibiting the 
qPCR reaction.

We suspect that carryover results from residual buffer trapped in the column that is picked up during elution. 
Although centrifugation moves most of the extraction buffers to the waste tube for removal, some lysis/binding 
buffer and/or wash buffers may remain stuck in the column after each centrifugation step (Fig. 1a). This could 
occur due to capillary pressure, physical entrapment, surface tension, or physicochemical interactions with either 
the silica column or the walls of the tube. Furthermore, it is possible for some of the inhibitory components con-
tained in the buffer to become unevenly trapped on the column. During the elution step, water could mix with 
these trapped buffers/inhibitors and carry them into the final eluent. We emphasize that for a standard elution 
volume of 50 µL water, even low volumes of carryover may correspond to a sufficiently inhibitory percentage of 
buffer in the eluent. For example, 500 nL buffer carryover corresponds to 1% buffer in the eluent and 2.5 µL cor-
responds to 5% buffer in the eluent.

Buffer carryover also occurred when using magnetic-bead extraction. In these protocols, magnetic beads 
that bind to NAs in the appropriate buffer conditions are added to the sample. Extraction buffers are then added 
(lysis and multiple washes) by sequential rounds of buffer addition, magnetization to pull the magnetic beads to 
the side of the tube, and aspiration of each buffer (Fig. 1b). For the elution step, water is added which releases 
the NAs from the magnetic beads, the magnetic beads are drawn to the sides of the tube, and the eluent is trans-
ferred to a clean tube. During this process, however, some buffer components may stick to the magnetic beads 
or adhere to the walls of the tube. Thus, although most of the buffers are removed during aspiration, a low con-
centration of extraction buffers transfer into the eluent when using the standard manufacturer protocols. Below 
(section “TPW validation for magnetic-bead extractions”), we explicitly examine the extent of buffer carryover 
for magnetic-bead extractions using low and high dilutions of eluent.

We hypothesized that we could address the issue of extraction buffer carryover in commercial NA extraction 
kits by the addition of a TPW. The TPW is composed of an immiscible compound that phase separates with 
water, and we added it in between the wash step and the final elution (Fig. 1a bottom, 1b bottom). Our aim was 
to develop a TPW that would be simple, inexpensive, and that would integrate easily with existing protocols. If 
successful, the TPW would greatly reduce buffer carryover and improve downstream assay performance. In our 
study (Fig. 1c), incorporating the TPW recovered qPCR (2.5x dilution of kit extract) and provided the expected 
Cq of ~20 cycles. This was a drastic performance improvement compared with the complete reaction inhibition 
we observed when the same dilution was run using the manufacturer protocol.

Exploring the effects of buffer inhibition on amplification. Having established that buffer carryover 
is a problem, we next aimed to better understand the effects of inhibition on amplification in qPCR and LAMP. 
We selected extraction buffers from a Zymo viral DNA/RNA kit and a Qiagen PCR purification kit. We chose 
these two commercial kits in particular because they both utilize minimal protocols (lysis, wash, elute) with no 
added steps (e.g. bacterial pellet spins, proteinase K, lysozyme, DNase/RNase, filtration, etc.). Specifically, we 
wanted to identify the concentration at which each buffer inhibits qPCR and LAMP. First, we added buffers at 
half-log dilutions (from 10% down to 0.032%) into λ phage spiked qPCR or LAMP reactions (1 µL diluted buffer, 
1 µL template, 8 µL reaction mix). We were also curious to see whether qPCR and LAMP were affected differently 
by inhibitors. We expected differences between the two amplification methods because qPCR amplification is 
temperature-gated whereas LAMP amplifies continuously. Previous literature on this topic shows “mixed results;” 
many studies have shown that LAMP is more robust than PCR in the presence of inhibitors47–50 whereas others 
have shown that inhibition of PCR and LAMP depends on which inhibitor was used40.

We found that all extraction buffers were inhibitory to both types of reactions, but at different concentrations 
(Fig. 2). As a control, for each kit, we ran the protocol with 0% buffer and found amplification with qPCR to yield a 
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Cq of ~20.0 ± 0.3 cycles and amplification with LAMP to have a TTP of 7.1 ± 0.6 min. As a general trend, we found 
that wash buffers (ethanol, Zymo Viral Wash Buffer, and Qiagen Buffer PE; Fig. 2a–c,g–i) were less inhibitory 
than lysis buffers (Zymo DNA/RNA Shield, Zymo DNA/RNA Viral Buffer, and Qiagen Buffer PB; Fig. 2d–f,j–l). 
For qPCR, we observed a statistically significant (P < 0.05) Cq delay of at least 0.5 cycles for wash buffer con-
centrations starting at 10% (Fig. 2a–c, Table S1) and for lysis buffers starting between 0.32–1% (Fig. 2d–f,  
Table S1). For LAMP, we observed a statistically significant (P < 0.05) TTP delay of at least 0.5 min for wash 
buffer concentrations starting at 1–3.2% (Fig. 2g–i, Table S2) and for lysis buffers starting at 0.32–3.2% (Fig. 2j–l, 
Table S2). These results imply that the extent of inhibition on qPCR and LAMP reactions is inhibitor-dependent, 
which may help explain the “mixed results” in the literature.

Next, we observed the presence of inhibitors at very low concentrations using melting temperature (Tm), as 
compared with Cq, TTP, or endpoint fluorescence (Figs. S1–S4). Interestingly, we observed that the presence of 
extraction buffers raised or lowered the Tm of the DNA product even at very low concentrations (1–3.2% for 
ethanol buffers, 0.32–1% for lysis buffers). Detecting a change in the Tm of an NA product could be a useful tool 
for diagnosing the presence or absence of extraction buffers in a reaction.

inhibition in samples with low nA concentrations. We next wished to test the effects of buffer-related 
inhibition in samples containing low NA concentrations. For applications requiring high sensitivity (e.g., 
single-cell sequencing, cell-free circulating DNA, SNP genotyping, and diagnostics), amplification reactions are 
often run at or near the limit-of-detection (LOD). Samples starting with low NA concentrations thus require 

Figure 1. Schematic depicting the carryover of buffers during sample preparation when nucleic acids (NA) 
are extracted using either (a) spin column centrifugation or (b) magnetic beads. Dashed red boxes highlight 
carryover of buffer into the eluent. Carryover buffer from the previous wash either mixes with the eluent (top 
dashed box in each panel) or phase separates (bottom dashed box in each panel) when the two-phase wash 
(TPW) is used. (c) Inset graph shows a qPCR run spiked with 5 × 104 copies λ phage DNA and λ phage primers 
into which we added Zymo ZR “kit extract.” (When extracting from pure water samples, we refer to the eluent 
as the “kit extract,” which only contains water and inhibitors originating from buffers in the extraction kits). The 
graph compares the reaction inhibition in a 10x extract dilution and a 2.5x extract dilution and shows the effect 
of adding a TPW (+TPW) during the nucleic-acid extraction step. Inhibition is similarly observed for magnetic 
bead extraction kits. N.D. stands for not detected. We ran 6 extractions (3 silica columns × 2 conditions) and 
used the same kit extract to make the high- and low-dilution conditions.
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the polymerase to replicate more DNA than in samples that start with a high NA concentration. Therefore, we 
hypothesized that the inhibition effect resulting from buffer carryover would be stronger for these low NA sam-
ples (and detected as delayed Cq or TTP). Additionally, it has been recorded that PCR reactions with different 
primers and targets can respond differentially to inhibitors11. To ensure the inhibitory effects we saw with λ phage 
DNA were not specific to just the set of DNA and primers we used, we ran this experiment using Escherichia coli 
DNA and E. coli primers.

Figure 2. (a–f) qPCR and (g–l) LAMP experiments demonstrate reaction inhibition from NA extraction kit 
buffers. Quantification cycles (Cq) for qPCR or time to positive (TTP) for LAMP spiked with 5 × 104 copies 
λ phage DNA and primers with increasing concentrations of extraction kit buffers. For ethanol dilutions 
(a,g), three separate amplification mixes were each combined with an independent ethanol dilution series. All 
remaining buffer dilutions (b–f,h–l) shared the same set of three amplification mixes (same 0% condition), and 
each amplification mix was combined with an independent dilution series of each buffer. Each bar is the average 
of qPCR or LAMP technical triplicates (black circles). Where shown, numbers above a bar indicate the number 
of samples that amplified out of technical triplicates. Gray shading indicates when inhibition (>0.5 cycles or 
>0.5 min) was observed according to changes in Cq or TTP. Samples marked N.D. were not detected within 
either 40 cycles or 40 min.
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With qPCR, we found that the cycle delay as a result of buffer inhibitors was higher at lower NA concentra-
tions (Fig. 3a,b). We started with a medium concentration of target (5 × 104 E. coli 23S copies) and tested 4-fold 
dilutions down to 0.05 copies with either control (no inhibition) or in the presence of 1% Zymo Viral DNA/RNA 
Buffer. We chose 1% lysis buffer because we had found 1% lysis buffer to be weakly inhibitory and we suspected 
inhibition may worsen with decreasing DNA concentration.

Our control reactions matched our expectations; we found 5 × 104 copies yielded a Cq of 19.55 ± 0.04, the 
cycle increased by ~2 for every 4-fold dilution, and we detected the target down to 3 copies. Compared with the 
1% lysis buffer condition, we found that the reaction for the highest concentration (5 × 104 copies) was greatly 
impaired by 4.65 ± 0.13 (95% CI: 4.33–4.97) cycles (Fig. 3b). The delay worsened and variance increased as the 
NA concentration was decreased. At 3 copies/rxn, there was an 8.45 ± 0.94 (95% CI: 6.11–10.79) cycle delay 
and all three triplicates amplified, but we needed to increase the number of cycles in this experiment in order to 
detect the delayed Cq. Our results showed that the presence of lysis buffer caused a decrease in the amplification 
efficiency with each cycle. This conclusion was also supported by the shallower amplification curves (Fig. S7).

With LAMP, we also found that the delay as a result of buffer inhibitors was higher at lower NA concentra-
tions (Fig. 3c,d). Because LAMP was more sensitive to inhibitors than qPCR, we compared the control to 0.32% 
lysis buffer. The control reaction TTP was 7.61 ± 0.08 min at 5 × 104 copies and the TTP increased with increas-
ing dilutions up to 11.1 ± 0.7 min at 195 copies. LAMP failed to amplify at higher concentrations of DNA than 
when using qPCR (amplification for 3 or fewer copies was stochastic). The addition of 0.32% lysis buffer caused 
a 0.95 ± 0.06 (95% CI: 0.80–1.10) min delay in TTP at the highest concentration (5 × 104 copies/rxn), which 
increased as the E. coli DNA concentration was lowered to a 1.76 ± 0.19 (95% CI: 1.29–2.23) min delay at the 
lowest detectable concentration (780 copies/rxn). At lower concentrations, amplification was stochastic. LAMP 
was unable to detect down to 195 copies/rxn in the presence of lysis buffer, indicating a loss in analytical sensitiv-
ity that was not observed with qPCR. Another difference between LAMP and qPCR is that although the LAMP 
TTP was delayed, the amplification rate and endpoint fluorescence in LAMP were not strongly affected (Fig. S7).

identifying a suitable tpW. Next, we identified a suitable wash buffer that would reduce the carryover of 
extraction buffer and integrate easily into existing protocols. The ideal wash buffer would be added after the final 
ethanol wash but prior to the elution and it would have the following properties: (1a) it would be non-inhibitory 
or (1b) it would not transfer to downstream assays such as qPCR or LAMP, (2) it would remove previous washes 
from the column by an appropriate combination of solid-liquid and liquid-liquid interfacial properties and sol-
ubility of inhibitory components, and (3) it would not prematurely elute NAs from the column. We directly 

Figure 3. (a,b) qPCR and (c,d) LAMP experiments targeting E. coli 23S rRNA gene, which shows increased 
impact of reaction inhibition at low NA concentrations. (a) qPCR and (c) LAMP spiked with 4-fold dilution 
series of E. coli 23S rRNA gene copies and comparing with and without Zymo Viral DNA/RNA Buffer. Each 
bar represents the average of technical qPCR or LAMP triplicates (black circles). Numbers above a bar indicate 
the number of samples which amplified if not all triplicates were detected. Dashed boxes indicate axes for 
zoomed-in graphs of (b) qPCR and (d) LAMP. Numbers above each pair of bars indicate the difference in either 
Cq or TTP between the control and the reaction with added lysis buffer. Samples marked N.D. were not detected 
within either 60 cycles or 40 min.
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investigated criterion 1a by performing qPCR and LAMP reactions. We spiked reactions with λ phage DNA, 
diluted up to 10 µL, and we added an additional 1 µL of different wash buffer candidates to a total of 11 µL. As 
additional wash candidates, we tested increasing chain lengths of primary alcohols (or secondary alcohols if the 
primary form was unavailable), 5 centistokes (cSt) silicone oil, and FC-40 fluorocarbon oil (Fig. 4a,b). As an 
experimental control, we tested a “No Additive” condition, which was a 10 µL reaction with optimized reaction 
conditions and no inhibitors. To control for the effects of a 1 µL dilution on the reaction, we also tested a “Water” 
condition which was an 11 µL reaction with no inhibitors.

The “No Additive” control case showed a qPCR Cq of 20.09 ± 0.01 cycles (95% CI: 20.07–20.12) and a LAMP 
TTP of 6.54 ± 0.05 min (95% CI: 6.42–6.66). We note that 1 µL in 11 µL is a large fraction of the reaction mix 
(~9%), so we are overestimating buffer carry-over concentrations compared to normal operating conditions. The 
“Water” control showed no delay for qPCR and a 0.55 min delay for LAMP due to the dilution of LAMP reactants. 
For both qPCR and LAMP reactions, we found that long-chain alcohols with ≥9 chain lengths, silicone oil, and 
FC-40 were non-inhibitory for qPCR (within 1 cycle) and LAMP (within 1 min) compared to the “No Additive” 
condition (Fig. 4a,b). Octanol showed delays for qPCR (3.54 cycle difference) and LAMP (4.63 min difference), 
and only 2 out of 3 replicates amplified for qPCR. All alcohols with ≤8 chain lengths either had delayed amplifi-
cation or the reaction was completely inhibited. Because long-chain alcohols, silicone oil, and FC-40 showed little 
to no inhibition of qPCR and LAMP, these candidates fulfilled criterion 1a.

These non-inhibitory wash candidates (long-chain alcohols, silicone oil, and FC-40), which we refer to as 
TPW, have low solubility in water (Table S7) and resulted in phase separation (Table S8). The TPW separates to 
either the top phase or the bottom phase (density dependent) while interacting minimally with the aqueous solu-
tion. As a result of reduced interactions with the aqueous solution, the TPW is less toxic to downstream reactions. 
In LAMP reactions with added alcohols (Fig. 4b), we also noticed that the TTP delay decreased as the solubility 
decreased (from 1-octanol to 2-dodecanol). The 1-octanol had the greatest delay (without completely inhibiting 
the reaction). We suspect that although 1-octanol mostly occupied its own phase, some 1-octanol dissolved in 
the aqueous phase and disrupted polymerase activity. Furthermore, we also noticed that the TTP for the very low 
solubility TPWs matched the “No Additive” condition rather than the “Water” condition, implying the reaction 
mix was not diluted by the 1 µL of added TPW.

Next, we evaluated criterion 1b (ensuring that the TPW does not transfer to qPCR and LAMP) as well as cri-
terion 2 (the ability of the TPW to remove previous washes from the column) by running a NA extraction with 
or without TPW and adding the resulting eluent into qPCR and LAMP (Fig. 4c,d). Of our TPW candidates, we 
selected 1-undecanol for further evaluation because (i) it was non-inhibitory for qPCR and LAMP reactions and 
(ii) as an alcohol, 1-undecanol may function similarly to ethanol- or isopropanol-based washes. In these experi-
ments (testing criteria 1b and 2), we first diluted a commercially purified λ phage DNA sample to 2.5 × 106 copies 
and ran an NA extraction using the Zymo Quick-DNA/RNA Viral Kit. We either followed the manufacturer pro-
tocol or added an additional 300 µL 1-undecanol wash in between the Viral Wash Buffer and elution step. Using 

Figure 4. Identifying the most effective TPW in (a) qPCR and (b) LAMP reactions and subsequent validation 
of 1-undecanol as a candidate TPW with (c) qPCR and (d) LAMP at low eluent dilutions. TPW candidates 
for (a) qPCR and (b) LAMP reactions were spiked with 5 × 104 copies λ phage DNA and primers, made to 
10 µL, and 1 µL of each wash candidate was added to yield 11 µL total. The number 2 next to the 1-octanol bar 
indicates that only two of the three replicates amplified. The dashed lines show the Cq or TTP of the uninhibited 
10 µL “No Additive” control. (c) qPCR with 2.2x diluted eluent and (d) LAMP with 2x diluted eluent on a λ 
phage DNA sample extracted with a Zymo Quick-Viral DNA/RNA kit. Protocol was performed according to 
manufacturer instructions as provided or with an additional TPW (+1-undecanol) between the ethanol wash 
and elution steps. Each bar represents the average of technical triplicates (black circles). We ran 6 extractions 
(3 silica columns x 2 conditions) and used the same eluent for both the qPCR and LAMP analyses. Samples 
marked N.D. were not detected within either 40 cycles or 40 min. NTC, no-template control. (a,b) We asked 
whether TPW candidates fell within the 99% CI of the “No Additive” control (qPCR: 20.01-20.17, LAMP: 6.25-
6.83) with outliers indicated with a *. (d) We asked whether the average TTP was statistically different between 
the manufacturer protocol and the +1-undecanol condition using a t-test.
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the manufacturer’s protocol, the resulting eluent is approximately 49 µL, but with the added TPW the resulting 
eluent is approximately 48 µL aqueous phase and ~1–2 µL 1-undecanol phase. Because we wanted to emphasize 
any potential inhibitory effects, we used a low dilution of eluent. For qPCR, we diluted 2.2x by adding 4.5 µL 
of eluent, 0.5 µL primers, and 5 µL qPCR reaction mix. For LAMP, we diluted 2x by adding 5 µL eluent, 0.5 µL 
primers, and 4.5 µL reaction mix. During the transfer of eluent into the reaction mix, we noticed that the phase 
separation yielded by the TPW resulted in minimal transfer of the TPW into downstream reactions (criterion 1b). 
The ~1–2 µL TPW separates from the aqueous phase and adheres to the walls of the tube, making it is easy to use 
a pipette to capture just the eluent.

Overall, we found that the addition of the 1-undecanol TPW greatly improved qPCR and LAMP performance 
at low dilution (Fig. 4c,d). Without the inclusion of the TPW, qPCR run at low dilution of eluent and follow-
ing the manufacturer’s NA extraction protocol led to failed amplification in all 9 samples. However, with the 
TPW, the reaction completely recovered with a Cq of 18.46 ± 0.22 cycles. For LAMP and low dilution, we found 
that the manufacturer protocol amplified in 6.78 ± 0.17 min whereas our modified TPW protocol amplified in 
6.00 ± 0.04 min (Fig. 4d). Not only was there a 0.78 min reduction in TTP (p < 0.01), variance was also reduced. 
Observing improvements for both qPCR and LAMP, we concluded there was reduced carryover of previous 
washes (criterion 2).

To confirm our result that the 1-undecanol TPW with low eluent dilutions led to significant improvements 
in qPCR and LAMP, we repeated this experiment twice more and found similar results. In total (Figs. 4 and 5), 
we ran 27 reactions (9 columns) following the manufacturer protocol and compared to 27 reactions (9 columns) 
with the added 1-undecanol wash. Each set of 3 columns showed a statistically significant (p < 0.01) difference 
comparing with and without 1-undecanol wash (p < 0.01) for qPCR and LAMP. For qPCR (triplicate) with the 
manufacturer protocol, we found 2/27 reaction wells with Cq between 18–22 cycles, 3/27 wells were delayed by 4 
or more cycles, and 22/27 wells did not amplify. Of the 5 wells that amplified, the average Cq and standard devi-
ation was 28.6 ± 9.2 cycles. Meanwhile, adding the 1-undecanol wash resulted in 25/27 wells with Cq between 
18–22 cycles, 2/27 wells with a delayed Cq, and all reactions amplified. The average Cq with the added 1-undecanol 
wash was 19.7 ± 2.5 cycles. We emphasize that in addition to more samples amplifying, we found that the Cq 
dropped and the measured variance among samples was reduced, thereby improving the accuracy, speed, and 
robustness of the diagnostic assay. For LAMP (triplicates), all 27 wells with TPW (10.23 ± 0.06 min) had a faster 
TTP than all 27 wells following manufacturer protocols (11.36 ± 0.27 min). Again, we find that the 1-undecanol 
wash improved the speed and robustness (reduced variance) of the assay.

Next, we investigated whether this result was specific to 1-undecanol or TPWs in general (Fig. 5a,b,d,e). For 
this experiment, we chose 2-dodecanol because it is the longest chain alcohol we tested and 1-octanol because it 
is the shortest chain alcohol for which both qPCR and LAMP still amplified (Fig. 4a,b). We expect 2-dodecanol 
to perform similarly to 1-undecanol because they are compositionally similar and both were previously found to 
be non-inhibitory for qPCR and LAMP (Fig. 4a,b). Accordingly, we expect 1-octanol might perform worse than 
the other TPW candidates, given its higher solubility and previously observed delays. We also chose silicone oil 
and FC-40 to evaluate nonalcoholic forms of TPW. The result of our study found that all five TPW candidates out-
performed the manufacturer protocol. In qPCR reactions, 7/9 reactions amplified with 2-dodecanol wash, 5/9 for 
1-octanol, 5/9 for silicone oil, and 4/9 for FC-40 whereas without the TPW (following the manufacturer protocol) 
amplification often failed (5/27). For LAMP, all TPWs conditions amplified with a faster TTP than manufacturer 
protocol. (P < 0.01).

We hypothesize 1-undecanol and 2-dodecanol performed best (greatest number of successfully ampli-
fied qPCR reactions and faster LAMP TTPs) because these two TPW candidates met all of our criteria (1a. 
non-inhibitory, 1b. low transfer to downstream assays, 2. remove previous wash, and 3. do not elute NAs). 
Meanwhile, we hypothesize 1-octanol performs slightly worse because 1-octanol is inhibitory to qPCR and 
LAMP (criterion 1a). However, these inhibitory effects are minimal because 1-octanol phase-separated from the 
eluent and, as a result, only a small volume of 1-octanol was carried-over into the downstream reactions (crite-
rion 1b). Lastly, we observed that both silicone oil and FC-40 demonstrated slightly worse performance than the 
other TPW candidates. A potential explanation for the lower performance of silicone oil and FC-40 is that during 
the TPW step, the alcohols mixed with the previous ethanol-based wash whereas silicone oil and FC-40 did not 
(Table S8). As a result, this allows the alcohol-based TPWs to dilute and more effectively cleanse droplets of eth-
anol trapped in the column (criterion 2).

Next, we evaluated whether or not the TPW meets criterion 3 (NAs are effectively eluted from the column 
during the TPW or lost due to premature elution or incomplete elution) (Fig. 5c,f). For this experiment, we used 
a 100x dilution to reduce buffer concentrations to non-inhibitory levels followed by digital PCR (dPCR); dPCR 
is a highly sensitive method for quantifying NAs that detects the same target (same primers) as qPCR. Although 
triplicates are commonly tested for qPCR and LAMP, for dPCR experiments we ran duplicates measurements 
each with more than 15,000 individual reactions. We merged the results from both experiments and used the 
Poisson distribution to calculate the final concentration using Bio-Rad’s QuantaSoft analysis software. We nor-
malized all dPCR concentrations to the average concentration of the three extractions following the manufacturer 
protocols. We found that the TPW did not appreciably affect the NA recovery, fulfilling our final criterion (3) for 
an ideal wash buffer. Furthermore, all highly diluted dPCR measurements showed similar NA recovery between 
manufacturer protocol and TPW conditions, whereas low dilutions resulted in stark differences for both qPCR 
and LAMP, further confirming that inhibitors are responsible for delays in Cq and TTP.

tpW validation for different kits with high and low dilution. To evaluate the generality of our 
approach and better understand the mechanism, we tested three extraction kit protocols with and without the 
added TPW. We also wanted to evaluate whether there is a difference in downstream amplification between high 
eluent dilution (10x) and low eluent dilution (2x or 2.5x). We evaluated Zymo’s kit D7021 using either the newer 
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protocol (Zymo Quick-DNA/RNA Viral Kit) or the older protocol (Zymo ZR Viral DNA/RNA Kit). Although 
both protocols use the same buffers, the Zymo Quick Kit has three wash steps (two viral wash buffers and one 
ethanol wash) whereas the Zymo ZR kit has one viral wash buffer step. By default, the Zymo kits do not include a 
“dry spin.” The Qiagen QIAquick uses a different set of buffers, has one wash step, and by default includes a “dry 
spin.” In this experiment, all kits extractions were performed on pure water (there are no NAs during the extrac-
tion, Fig. S1) to ensure we are only evaluating the effects of buffer inhibitors. The subsequent qPCR and LAMP 
reactions were then spiked with 5 × 104 λ DNA copies. As a control, water was added to qPCR or LAMP (rather 
than kit extract) to represent the best-case reaction without inhibitors (“No Extract”).

We did not observe inhibition at 10x dilution following manufacturer protocols (Fig. 6), which confirmed that 
the standard 10x or more dilution into qPCR and LAMP prevents the inhibitory effects we see at lower dilutions. 
With a 10x dilution, we noticed that the “No Dry Spin” condition using the Qiagen kit with LAMP resulted in 
~1 min delay. We note that the Qiagen kit manufacturer protocol requires the dry spin. Without the dry spin, 

Figure 5. Comparing the performance of different TPWs with eluent at 2.2x dilution in qPCR (a,d), 2x 
dilution in LAMP (b,e), and 100x dilution in digital PCR (dPCR) (c,f). Samples were spiked with 2.5 × 106 
copies λ phage DNA and extracted in 50 µL water with a Zymo Quick-Viral DNA/RNA kit. We compared 
each manufacturer’s protocol (Manuf. protocol) with the same protocol plus an additional TPW of either 
1-undecanol, 1-octanol, 2-dodecanol, silicone oil, or FC-40. To observe inhibition, a low eluent dilution was 
used in qPCR and LAMP with λ phage primers. To get a highly accurate quantification of NAs (for comparing 
these results), we ran each sample using dPCR with a high dilution of eluent (100x), which eliminates the effects 
of inhibitors. Each bar represents the average of qPCR or LAMP technical triplicates (black circles) or single 
dPCR measurements. We ran 24 extractions (3 silica columns x 8 conditions) and the same eluent was used to 
run the qPCR, LAMP, and dPCR analyses. Where shown, numbers above a bar indicate the number of samples 
which amplified if not all triplicates were detected. Dashed lines (panels c and f) indicate the average NA 
recovery following manufacturer protocol. Samples marked N.D. were not detected within 40 cycles by qPCR or 
40 min by LAMP. (a–f) For each of the five TPW candidates, we asked whether the mean value was statistically 
different from the manufacturer protocol by t-test. N.S. stands for not significant (P > 0.05).
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we noticed the Qiagen kit extract had substantially more volume (~65 µL) than when the dry spin was included 
(~49 µL). This implies ~16 µL (25%) carryover of Buffer PE into the kit extract. The volume of kit extract from 
Zymo kits, however, was not noticeably affected by the addition of the dry spin (~49 µL with or ~49 µL without).

However, when we used 2x or 2.5x dilutions we observed significant inhibition (Fig. 6). With the Zymo kits 
and qPCR, there was no amplification whether or not an additional dry spin was added (Fig. 6a,b), contradicting 
Zymo’s “no buffer contamination” claim. For the Qiagen kit (Fig. 6c) and qPCR, the dry spin performs quite well, 
matching the No Extract control. With the Zymo kits and LAMP (Fig. 6d,e), there are delays when following the 
protocol (no dry spin) but this is slightly improved by adding a dry spin. With the Qiagen kit and LAMP (Fig. 6f), 
we observe total reaction inhibition without the dry spin and a 1.1 min delay following the manufacturer protocol. 
In summary, these results prove that inhibitors are carried into the elution, the additional dry step is helpful for 
removing wash buffers, and high dilution is the responsible for reducing concentrations to non-inhibitory levels.

Lastly, we used our modified protocol utilizing 1-undecanol TPW and found substantially improved per-
formance, even at low dilutions of the kit extract. We calculated the 95% confidence interval (C.I.) for each 
1-undecanol condition at the low dilution and counted the number of outliers when following the manufac-
turer protocol. For all kits and combinations, we find that the TPW matches performance (Qiagen qPCR) or 
substantially improved performance (Zymo ZR and Zymo Quick qPCR, all LAMP conditions). The most dras-
tic improvement is for the Zymo ZR kit and qPCR, which failed to amplify with the manufacturer protocol 
but completely recovered when we added the TPW (Fig. 1c is a subset of Fig. 6b showing “No Dry Spin” and 

Figure 6. Evaluation of TPW for different silica-column NA extraction kit protocols on pure water samples 
using (a–c) qPCR and (d–f) LAMP. All reactions were spiked with 5 × 104 copies λ phage DNA and primers. 
By manufacturer protocol, the (a,d) Zymo Quick-DNA/RNA Viral Kit and (b,e) Zymo ZR Viral DNA/RNA 
Kit do not include the dry spin (+dry spin) whereas the (c,f) Qiagen QIAquick PCR Purification Kit does. The 
left of each graph shows high dilution and the right shows low dilution. Each bar represents the result from a 
single qPCR or LAMP measurement. We ran 27 silica-column extractions (3 silica columns × 3 conditions × 3 
extraction protocols) and the kit extract was shared between high and low dilutions of both qPCR and 
LAMP. Dashed lines show the Cq or TTP for a reaction without inhibitors (“No Extract”). Samples marked 
N.D. were not detected within either 40 cycles or 40 min. (a–f) We asked whether the manufacturer protocol 
replicates (“No Dry Spin for Zymo kits, “+dry spin” for Qiagen kit) fell within the 95% CI of the corresponding 
+1-undecanol condition for the low kit extract dilution case. The number of replicates that lie outside the 95% 
CI are indicated by the number of + (above) and - (below).
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“+1-undecanol”). Given the dramatic improvements and ease of adding the TPW, we recommend silica-column 
kit manufacturers further evaluate the TPW and consider inclusion with their kits.

We evaluated whether in some cases the TPW could be considered as an alternative for ethanol-based washes 
(Fig. S8). As a comparison, we used the Zymo ZR kit which only has one wash step (viral wash buffer). We either 
replaced the viral wash-buffer step with a dry spin (control), ethanol (control), or different TPW solutions. Briefly, 
we found that at least under these clean conditions, ethanol wash slightly outperforms the viral wash buffer, 
long-chain alcohol washes have the best performance, and non-alcohol washes (silicone oil and fluorocarbon oil) 
led to failed amplifications.

TPW validation for different reaction mixes with high and low dilution. To understand how dif-
ferent reaction mixes respond to buffer carry-over, we compared NEB’s SsoFast mix to NEB’s Luna mix and our 
manually prepared LAMP mix to NEB’s pre-made LAMP mix. Using a Zymo Quick-DNA/RNA Viral Kit for 
extractions, we found that the Luna mix amplified at a 2.2x dilution of kit eluent whereas the SsoFast mix did not 
(Fig. S6a,b). This result implies that the Luna kit is more tolerant to the Zymo extraction buffer inhibitors than to 
those in the SsoFast mix. When we compared experiments with and without the TPW, we again observed that the 
inclusion of the TPW improved downstream assay performance, recovering amplification for the SsoFast mix and 
reducing the Cq from 19.1 to 18.4 cycles for the Luna qPCR assay. The manually prepared LAMP mix performed 
similarly to the pre-made LAMP kit, and again the TPW improved performance at low eluent dilution (2.86x). 
The TTP for the home-made mix was reduced from 7.4 to 7.0 min and the TTP for the pre-made mix was reduced 
from 7.9 to 7.4 min (Fig. S6c,d).

tpW validation for magnetic-bead extractions. We next tested whether TPW would improve mag-
netic bead extractions. Sur et al. previously found that transferring magnetic particles through a hydropho-
bic liquid effectively reduced PCR inhibitors51. This method, termed immiscible phase filter (IPF), allowed for 
the replacement of multiple wash steps with a single pass through an immiscible liquid. At a 5x dilution of elu-
ent into RT-qPCR, the IPF method showed no statistical difference in detected copies compared to commercial 
kits for HIV-1 spiked into plasma, Chlamydia and Gonorrhea spiked into urine, and proviral HIV-1 DNA inte-
grated with peripheral blood mononuclear cells in whole blood. Another previous study conducted by Berry et al.  
described the IFAST (immiscible filtration assisted by surface tension) device52, and further analyzed their method 
by examining surface tensions and energies associated with the aqueous phase, immiscible phase, and their device 
material. The IFAST device reduced total NA extraction operation time to less than 5 min while showing similar 
performance to commercial extraction kits with operation times between 15 to 45 min (eluent dilution unspecified).

Here with test the TPW with a commercial magnetic bead extraction kit and evaluate both high and low 
dilution of eluent into LAMP and qPCR. A schematic of the magnetic-bead protocol is shown in Fig. 1b. Using a 
Zymo Quick-DNA/RNA MagBead Extraction kit, we started with 1 × 106 copies λ DNA and eluted with 50 µL. 
By default, the protocol requires a 10 min air dry step to allow residual ethanol from the wash step to evaporate. 
We tested the manufacturer protocol, protocol without the air dry step, and the protocol where the air dry step 
was replaced with a 1-undecanol TPW. At 10x dilution into qPCR (Fig. 7a), omitting the dry step has no effect. 
Adding the 1-undecanol TPW led to a 1.1 cycle delay, which corresponds to a decrease in NA extraction efficiency 
(Fig. 7c) rather than an inhibitory delay. At 10x dilution into LAMP (Fig. 7b), omitting the air dry step causes a 
1 min delay, and including the TPW leads to a 0.7 min TTP improvement. At low dilutions, the inhibitory effects 
are more drastic, and the TPW clearly outperformed the kit protocol with 2 of 3 manufacturer protocol samples 
performing worse by qPCR and 3 of 3 manufacturer protocol non-detects.

Further experimentation with the MagBead kit revealed that the greater the volume of 1-undecanol carryover, 
the lower NA recovery we observed. In the experiment shown (Fig. 7), the three extractions had approximately 
30 µL, 24 µL, and 22 µL of 1-undecanol carryover as measured by pipette. We found that following the initial 
1-undecanol aspiration, a significant volume of 1-undecanol remains stuck to the magnetic beads and walls of the 
tube. To improve NA yield, we developed a modified protocol in which we aspirate the 1-undecanol, wait at least 
1 min, and aspirate any remaining 1-undecanol that slid down the tube due to gravity. This modification led to 
high yield of NAs after TPW for 1-undecanol (Fig. 7c) and for other compounds (Fig. S9).

tpW validation for Rt. We next tested how extraction buffer carryover and TPW would affect RT. For applica-
tions requiring high sensitivity, the starting sample might only contain a few cells. In these scenarios, it is beneficial 
to detect RNA because many RNA copies can be made from a single DNA copy. To evaluate whether or not buffer 
carryover affects RT, we ran an RT experiment using RNA from N. gonorrhoeae, a pathogen with clinical and diag-
nostic relevance (Fig. 8). First, a high concentration of RNA was extracted using a Zymo ZR Viral DNA/RNA Kit, 
and the extracted RNA was diluted 100-fold to reduce the concentration of inhibitors. Separately, we ran kit extrac-
tions on pure water samples for all previously examined NA extraction kits. We combined RNA with kit extractions 
into RT reactions containing WarmStart Rtx, NG 16S rRNA PCR primers, and other reaction components. We 
emphasize that all reactions contained equal concentrations of RNA, and were expected to produce equal levels of 
DNA. In each RT reaction, we either added 1 µL kit extract to 9 µL reaction mix (10x) or 5 µL kit extract to 5 µL RT 
reaction mix (2x). For the “No Extract” condition, we added either 1 µL or 5 µL water. Following RT, the transcribed 
DNA was then diluted an additional 100x and added to dPCR mix (reaction mix, PCR primers) for quantitative 
analysis. By separating the RT reaction and quantification with dPCR, we can clearly investigate the effects of buffer 
inhibition on RT alone (whereas with a 1-step RT-dPCR reaction it is difficult to determine whether inhibition 
affects RT or dPCR). We observed a clear trend: using kit extracts while following manufacturer protocols led to a 
reduction in the amount of DNA that was transcribed. This trend was observed even at a 10x dilution of kit extract 
into the RT reaction, implying that RT is more strongly inhibited than qPCR or LAMP (Fig. 8a). However, when the 
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TPW was added to the NA extraction kit, transcription efficiency was improved for all kits. These trends are even 
more pronounced when examining a 2x dilution of kit extract into the RT reaction (Fig. 8b). These results were 
further confirmed with greater sample size in a separate experiment for 2x dilution of kit extract into RT reaction 
(Fig. 8c). We found that the TPW significantly improved the efficiency of the RT reaction.

conclusions
In this manuscript, we evaluated how the buffers from solid-phase silica-column centrifugation and 
magnetic-bead extraction kits are carried over into the eluent and inhibit downstream amplification reactions. 
Using kits from leading manufacturers, we repeatedly observed that as expected, a high (10x) dilution of eluent 
showed little to no inhibition of qPCR or LAMP reactions. However, carried-over extraction buffers caused delays 

Figure 7. Evaluating TPW for compatibility with Zymo Quick-DNA/RNA MagBead extraction with (a) 
qPCR, (b) LAMP, and (c) dPCR. Extraction performed on 1 × 106 λ phage DNA copies with either a 10 min air 
dry (Manuf. protocol), no air dry, or with the air dry replaced by a TPW (+1-undecanol) step. The resulting 
eluent is spiked at either high dilution or low dilution into (a) qPCR and (b) LAMP or 100x dilution into (c) 
dPCR. For dPCR (d), the bars to the right of the solid black line show the results for an extraction protocol 
with a +1-undecanol wash using a high-yield protocol from a separate experiment (normalized to the no TPW 
control in that experiment). Bars represent single qPCR and LAMP or the merged result from a duplicate dPCR 
measurement. Dashed line in dPCR (c) indicates the average NA recovery following manufacturer protocol. We 
ran 9 extractions (3 magnetic-bead extractions x 3 conditions) and the eluent was shared among qPCR, LAMP, 
and dPCR analyses. Samples marked N.D. were not detected within either 40 cycles for qPCR or 40 min for 
LAMP. (a,b) We asked whether the manufacturer protocol replicates fell within the 95% CI of the corresponding 
+1-undecanol condition for the low eluent dilution case. The number of replicates that lie outside the 95% CI 
were indicated by the number of *s.

Figure 8. Measurement of reverse transcription (RT) efficiency on Neisseria gonorrhoeae RNA using 16S rRNA 
gene primers with (a) 10x dilution or (b,c) 2x dilution of extractions from different commercial kits into RT 
reaction mix. NA concentration quantified by digital PCR after 100x dilution of post-transcribed RT mix. (c) 
We asked whether RT yield comparing with and without TPW was statistically different using a t-test.
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or completely inhibited amplification and reverse transcription at low (2–2.5x) dilutions of eluent. We observed 
reaction inhibition using two different silica-column centrifugation kits (3 protocols: Zymo ZR, Zymo Quick, 
Qiagen QIAquick) and a magnetic-bead kit (Zymo MagBead) when using the manufacturer protocols.

We reduced the inhibition due to carryover by developing a TPW protocol that improved eluent purity and 
led to more efficient and reproducible reactions. We showed that the inclusion of a dry spin step, although helpful, 
still generated buffer carryover which inhibited qPCR and LAMP at low eluent dilutions. We discovered that the 
inclusion of a TPW step greatly reduced buffer carryover, and we found that low solubility compounds exhibited 
the best performance. Using the TPW protocol improved eluent purity, leading to more efficient (reduced delays 
in Cq or TTP) reactions. The addition of the TPW also improved the efficiency of RT reactions.

Furthermore, TPW improved reproducibility of amplification reactions by reducing Cq and TTP variations 
between measurements (Fig. 7a at 2.2x dilution), and at low target concentrations leading to more repeatable 
detection (Fig. 7b, 2x dilution). Reproducibility is an important aspect of nucleic-acid assays in biological research 
and diagnostic assays. Given the high degree of sensitivity of reactions to levels of carryover (Fig. 2), especially at 
low target NA concentrations (Fig. 3), it is expected that slight variation in the extent of carryover can lead to high 
variation in the performance of a NA assay. High purity eluent from TPW was compatible with low dilutions into 
amplification mix, improving assay sensitivity because more NAs could be added to each reaction.

We anticipate the addition of the TPW would improve NA extraction purity and performance of downstream 
assays in a variety of applications. We have demonstrated performance of TPW for a range of commercial extrac-
tions kits and a range of nucleic-acid targets. One limitation of this study is that it is not exhaustive: we have not 
tested every possible kit, every possible sample type, every possible NA reaction, and every possible nucleic-acid 
target. However, TPW is inexpensive and easy to incorporate into both silica-column (one additional spin) and 
magnetic-bead extractions (one additional aspiration), and therefore we encourage researchers and commercial 
suppliers to test TPW in their specific workflows and protocols. In particular, we expect to use the TPW extraction 
in combination with lyophilized reagents, which requires no dilution, and is highly desirable for point-of-care diag-
nostics. Finally, the TPW will enable the field to develop new methods of sample preparation, such as pressure- or 
vacuum-based NA extractions, that are simpler, quicker, and more portable than current protocols.

In addition to reducing extraction buffer carryover, we hypothesize the TPW could also reduce carryover of 
some compounds originating from the sample by removing them from the solid phase. For example, long-chain 
alcohols might remove nonpolar compounds better than traditional wash buffers (ethanol or isopropanol). This 
hypothesis remains to be tested in future work. Furthermore, we anticipate that improved eluent purity from the 
added TPW would enable high-sensitivity analyses that were previously difficult or impossible because high dilution 
of eluent has been the de facto standard. Improved eluent purity would be especially valuable for more challenging 
reactions, including long amplicons (DNA and RNA), targets with high GC content, and highly structured or chem-
ically modified RNA targets (e.g. rRNA, tRNA). By enabling the use of lower dilutions, this method would enhance 
performance of NA analysis in applications where sensitivity and reproducibility are critical, including single-cell 
sequencing, cell-free circulating DNA analyses and SNP detection, and molecular diagnostics.

Data availability
Full dataset available through CaltechDATA, https://doi.org/10.22002/D1.1298; https://data.caltech.edu/
records/1298.
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