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A quantitative sequencing framework for absolute
abundance measurements of mucosal and lumenal
microbial communities
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A fundamental goal in microbiome studies is determining which microbes affect host phy-

siology. Standard methods for determining changes in microbial taxa measure relative, rather

than absolute abundances. Moreover, studies often analyze only stool, despite microbial

diversity differing substantially among gastrointestinal (GI) locations. Here, we develop a

quantitative framework to measure absolute abundances of individual bacterial taxa by

combining the precision of digital PCR with the high-throughput nature of 16S rRNA gene

amplicon sequencing. In a murine ketogenic-diet study, we compare microbial loads in

lumenal and mucosal samples along the GI tract. Quantitative measurements of absolute (but

not relative) abundances reveal decreases in total microbial loads on the ketogenic diet and

enable us to determine the differential effects of diet on each taxon in stool and small-

intestine mucosa samples. This rigorous quantitative microbial analysis framework, appro-

priate for diverse GI locations enables mapping microbial biogeography of the mammalian GI

tract and more accurate analyses of changes in microbial taxa in microbiome studies.
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One main goal of microbiome studies is to determine
which taxa, if any, drive phenotypic changes among study
groups1–3. The first step in this process is often to survey

which microbial taxa differ in abundance between study groups
(differentially abundant taxa). This survey is commonly per-
formed by amplifying the 16S ribosomal RNA (rRNA) gene
amplicon with “universal” primer sets before high-throughput
sequencing4. The output of these studies provides the relative, not
absolute, abundance of each taxon in each sample. Researchers
often then use standard statistical tests or microbiome-specific
packages to determine which taxa are differentially abundant5,6.

Relative-abundance analyses are effective for determining the
major microbial taxa in an environment (e.g., the human
Microbiome Project). However, several researchers have pointed
out the inherent limitations of comparing relative abundances
between samples7–10. In analyses of relative data, every increase in
one taxon’s abundance causes an equivalent decrease across the
remaining taxa. Thus, the measurement of a taxon’s relative
abundance is dependent on the abundance of all other taxa,
which can lead to high false-positive rates in differential taxon
analyses8,11–13 and negative correlation biases in correlation-
based analyses14,15. Several methods (e.g., ALDEx216, Ancom17,
Gneiss18, Differential Ranking10) acknowledge these biases and
aim to address them by using the ratios among taxa, which are
conserved regardless of whether the data are relative or absolute.
These methods are particularly valuable because they enable
improved re-analysis of existing datasets reporting relative
abundances10,16–18.

Despite such methodological advancements, analyses of rela-
tive abundance cannot fully capture how individual microbial
taxa differ among samples or experimental conditions. Using the
simple example of a community containing two taxa (Fig. 1), we
see that an increase in the ratio between Taxon A and Taxon B
could indicate one of five scenarios: (i) Taxon A increased
(Fig. 1a), (ii) Taxon B decreased (Fig. 1b), (iii) A combination of 1
and 2, (iv) Taxon A and Taxon B increased but Taxon A
increased by a greater magnitude, or (v) Taxon A and Taxon B
decreased but Taxon B decreased by a greater magnitude
(Fig. 1c). Knowing which of these five scenarios occurs when
analyzing experimental data could drastically alter the inter-
pretation of which taxa are positively or negatively associated
with phenotypes. Thus, an inherent limitation of methods that
use relative abundance is that they cannot determine whether an

individual taxon is more abundant or less abundant (the direction
of the change) or by how much (the magnitude of the change)
between two experimental conditions or samples.

To overcome these limitations, several important methods have
been developed for quantifying the absolute abundance of
microbial taxa by using known “anchor” points to convert relative
data to absolutes. Spiked standards are commonly used in
method calibration and have recently been applied to quantifying
taxa in microbiome research19–23. These methods require a
purified DNA sequence of known concentration from an
organism not present in the sample and an estimate of the initial
sample concentration to determine the amount of exogenous
DNA to spike-in. Another group of anchoring methods, such as
those that use flow cytometry24, total DNA25, or quantitative PCR
(qPCR)26–28, measure the total concentration of cells, DNA, or
amplicons to transform the relative abundances to absolute
numbers. These methods have already demonstrated the value of
quantitative microbiome analysis, yet microbiome researchers
have not yet uniformly adopted these methods. One may spec-
ulate that this lack of adoption is because of real or potential
limitations of these methods. For example, flow cytometry-based
methods require dissociating the sample into single bacterial cells,
which could require complex sample preparation and have not
been validated with complex samples such as from gut mucosa.
Total-DNA-based methods are limited to samples only contain-
ing microbial DNA (no host DNA), and spike-in or qPCR-based
methods can be limited by amplification biases29,30. To increase
utilization of quantitative microbiome analyses, the following
capabilities and validation need to be demonstrated: (i) perfor-
mance across samples with microbial loads ranging from high, as
in stool, to low, as in the small-intestine; (ii) performance across
biogeographically diverse sample types, from microbe-rich stool
and colonic contents to host-rich mucosal samples; (iii) explicit
evaluation of limits of quantification of the method, and how
these limits depend on the starting microbial load, relative
abundance of a specific target taxon in the sample, and
sequencing depth.

To address this challenge, in this paper we establish a rigorous,
absolute quantification framework based on digital PCR (dPCR)
anchoring. We chose dPCR as our anchoring method because
PCR is already part of sequencing protocols and has been
extensively validated as a quantitative method in nucleic-acid
measurements. To achieve precise measurements of absolute
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Fig. 1 The value of absolute (compared with relative) quantification illustrated by three hypothetical scenarios. In this hypothetical, two taxa (Taxon A
and Taxon B) are found in equal abundance (50:50) in a “healthy” state but in an 80:20 ratio in the “disease” state. Three possible scenarios arise: a Taxon
A increases in abundance while Taxon B remains the same; b Taxon A remains unchanged while Taxon B decreases in abundance, and c Taxon A and
Taxon B both decrease, but Taxon B decreases by a greater magnitude.
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abundance from diverse sample types, we assessed the efficiency
and evenness of the DNA extraction protocol. To minimize and
quantify bias resulting from potentially uneven amplification of
microbial 16S rRNA gene DNA, or non-specific amplification of
host DNA, we utilized dPCR in a microfluidic format31–33. dPCR
is an ultrasensitive method for counting single molecules of DNA
or RNA34–36. By dividing a PCR reaction into thousands of
nanoliter droplets and counting the number of “positive” wells
(those with amplified template), dPCR yields absolute quantifi-
cation without a standard curve. To understand the quantitative
limits of our methodology, we measured the accuracy of each
taxon’s absolute abundance as a factor of both input DNA
amount and individual taxon relative abundance37–39. We then
evaluated this absolute quantification workflow by performing a
murine ketogenic-diet study that illustrates how the selection of
relative- vs. absolute-quantification analyses can result in differ-
ent interpretations of the same experimental results. Many studies
have shown that ketogenic diets can induce substantial compo-
sitional changes in gut-microbiota40–42, so, we predicted it would
serve as a good illustrative model for our workflow. Finally, we
applied this workflow to an analysis of microbial loads along the
entire gastrointestinal (GI) tract to highlight the importance of
judicious selection of sample location when evaluating the impact
of diet on host phenotype, and to highlight the applicability of
this workflow to GI sites with diverse microbial loads.

Results
Efficient DNA extraction across microbial loads and sample
types. To estimate the maximum quantity of sample we could

extract before exceeding the capacity of a 20-µg column, we
measured total DNA and microbial DNA load across small-
intestine and large-intestine lumenal and mucosal samples
(Supplementary Fig. 1). We then evaluated extraction efficiency
across three tissue matrices (mucosa, cecum contents, and stool)
to assess whether variation in levels of PCR inhibitors and non-
microbial DNA interfered with microbial quantification. We
spiked a defined 8-member microbial community into GI samples
taken from germ-free (GF) mice. To assess quantitative limits, we
performed a dilution series of microbial spike-in from 1.4 × 109

CFU/mL to 1.4 × 105 CFU/mL. dPCR quantification showed near
equal and complete recovery of microbial DNA over 5 orders of
magnitude (Fig. 2a). Overall, we measured ~2x accuracy in
extraction across all tissue types (cecum contents, stool, small-
intestine (SI) mucosa) when total 16S rRNA gene input was
greater than 8.3 × 104 copies (Supplementary Fig. 2). Normalizing
this sample input to the approximate maximum extraction mass
(200 mg stool, 8 mg mucosa) yielded a lower limit of quantifica-
tion (LLOQ) of 4.2 × 105 16S rRNA gene copies per gram for
stool/cecum contents and 1 × 107 16S rRNA gene copies per gram
for mucosa. Mucosal samples had a higher LLOQ because the
high host DNA in this tissue type saturates the column, limiting
total mass input.

Next, to ensure extraction performance was consistent for both
Gram-negative and Gram-positive microbes, we performed 16S
rRNA gene amplicon sequencing using previously described
improved primers and protocol31,33 on a subset of the extracted
samples (Fig. 2b). It is important to note that all amplification
reactions for 16S rRNA gene library prep were monitored with
real-time qPCR and we stopped the reactions when they reached
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Fig. 2 Lower limits of quantification for total microbial DNA extraction and 16S rRNA gene amplicon sequencing. a A comparison of theoretical and
measured copies of the 16S rRNA gene with digital PCR using an eight-member microbial community spiked at a range of dilutions into germ-free (GF)
mouse tissue from small-intestine (SI) mucosa, cecum contents, and stool. Each bar plot shows a single technical replicate for each matrix. b Relative
abundance of the eight taxa as predicted and measured after 16S rRNA gene amplicon sequencing. c Correlation between the mean (n= 4) relative
abundance of each taxon and the coefficient of variation (%CV) using a cecum sample from a mouse on a chow diet with an initial template input of either
1.2 × 107 or 1.2 × 104 16S rRNA gene copies. Each analysis comprised four technical (sequencing) replicates. Taxa found only in the low-input sample were
labeled contaminants (red points); taxa found in the high-input sample but not low-input sample were labeled dropouts (yellow points). Red shading
indicates the Poisson sampling 95% confidence interval (10,000 bootstrapped replicates) at a sequencing read depth of 28,000. d Relationship between
relative abundance threshold (see text for details) and sequencing read depths at 30%, 40%, and 50% CV thresholds.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16224-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2590 | https://doi.org/10.1038/s41467-020-16224-6 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the late exponential phase to limit overamplification and chimera
formation30–33,43,44. Extraction appeared less even among
microbial taxa at lower total microbial DNA inputs (Fig. 2b).
This discrepancy from the theoretical profile did not correlate
with the presence of chimeric sequences (Supplementary Fig. 3)
and was likely a function of the reduced accuracy incurred when
diluting complex microbial samples. Additionally, sequencing
samples with low total microbial loads (<1 × 104 16S rRNA gene
copies) resulted in the presence of contaminants, as confirmed by
sequencing of negative control extractions (Supplementary
Table 1).

Quantitative limits of 16S rRNA gene amplicon sequencing. To
establish the precision of relative-abundance measurements, we
sequenced four replicates of DNA extractions from cecum sam-
ples. Libraries from one DNA extraction were prepared with
either an input of 1.2 × 107 16S rRNA gene copies or 1.2 × 104 16S
rRNA gene copies to determine the impact of starting DNA
amount on sequencing variability. We calculated the coefficient of
variation (%CV) for each taxon’s relative abundance from
amplicon sequencing the replicate samples. Each taxon’s mean
relative abundance (n= 4) was then plotted against its corre-
sponding coefficient of variation of the relative abundance
(Fig. 2c). We defined “dropouts” as taxa present only in the high-
DNA-input sample whereas we defined “contaminants” as taxa
present only in the low-DNA-input sample. The two dropout taxa
in the low-input sample corresponded to the lowest abundance
taxa from the high-input DNA sample (yellow points, Fig. 2c).
Most of the contaminant taxa in the low-input sample had a
relative abundance <0.03%, but three taxa (Pseudomonas(g),
Acinetobacter(g), Rhizobiales(f)) had relative abundances of
0.38%, 0.35%, and 0.1%, respectively. These three taxa were also
the three most common contaminants in our negative control
extractions (Supplementary Table 1). The presence of con-
taminants in the sample containing 1.2 × 104 16S rRNA gene
copies was consistent with the input amount at which we
observed contaminants in our mixed microbial community
dilutions (Fig. 2b). We calculated a bootstrapped Poisson sam-
pling confidence interval at our sequencing depth (28,000 reads)
to assess how close our accuracy limits were to the theoretical
limits (red shading, Fig. 2c). At the low-DNA input level of 1.2 ×
104 16S rRNA gene copies, we began to reach the fundamental
Poisson loading limit in our library-preparation reaction (Sup-
plementary Fig. 4a). We expected divergence of the %CV at
~0.01% abundance because at a read depth of 28,000 a relative
abundance of 0.01% is a measure of ~3 reads whereas at a total
16S rRNA gene copy input of 1.4 × 104 a relative abundance of
0.01% is ~1 copy. Poisson statistics also helped us define the
theoretical lower limits of relative-abundance measurements as a
factor of sequencing depth (Supplementary Fig. 4b).

We next wished to quantify an approximate threshold that
would tell us, for a given sequencing depth, at what percentage of
relative abundance we lose accuracy in our measurements (we
defined this threshold as “relative abundance threshold”). To
determine this threshold, we fit a negative exponential to the
replicate data and identified the percentage abundance at which
30% CV was observed. This threshold is a function of the
sequencing depth, so we subsampled the data at decreasing read
counts and repeated the exponential fitting method to calculate
the relationship between the relative abundance threshold and
sequencing depth (Fig. 2d). Greater sequencing depths yielded
lower quantitative limits with diminishing returns, as expected.
We found that the threshold for percentage abundance decreases
with increasing sequencing depth with a square-root dependence
analogous to the square-root dependence of Poisson noise. This

trend follows for %CV thresholds of 40% and 50% as well
(Fig. 2d). This analysis provides a framework with which to
impose thresholds on relative-abundance data that are grounded
on the calculated limits of quantitation.

Absolute quantification of taxa via digital PCR (dPCR)
anchoring. We calculated absolute abundances of taxa from
sequencing data using dPCR measurement of total microbial
loads as an anchor. Briefly, relative abundance of each taxon was
measured by sequencing and these numbers were multiplied by
the total number of 16S rRNA gene copies (obtained using the
same universal primers from amplicon sequencing, without the
barcodes) from dPCR. Next, we evaluated the accuracy of this
quantitative-sequencing approach. Typically, evaluation of
quantitative accuracy and precision would involve the use of a
mock microbial community (like the one used in Fig. 2). How-
ever, because we computed the absolute instead of relative
abundances, we were able to use the actual gut-microbiota sam-
ples and compare the results to the dPCR data obtained with
relevant taxon-specific primers. The 16S rRNA gene copy amount
was then normalized to the mass of each extracted sample after
correcting for volume losses (Materials and methods; Eq. 1). We
chose four representative taxa to encompass common gut flora of
varying classification levels: Akkermansia muciniphila(s), Lach-
nospiraceae(f), Bacteroidales(o), and Lactobacillaceae(f). Like
eubacterial primers, taxon-specific primer sets can (in principle)
give rise to non-specific amplification due to overlap with host
mitochondrial DNA. To avoid non-specific amplification, we ran
temperature gradients with GF mucosal DNA and taxa-specific
microbial DNA to identify the optimal annealing temperature for
each primer set (Supplementary Fig. 5). Each taxon-specific pri-
mer targets a separate region of the 16S rRNA gene than the
universal primer set, thus keeping the gene copy-number
equivalent across primers. We observed high correlation coeffi-
cients between the taxa load determined by quantitative
sequencing with dPCR anchoring and the taxa load measured by
dPCR with taxa-specific primers (all r2 ≥ 0.97, Fig. 3a) for all four
taxa over a range of ~6 orders of magnitude. The ratio of the total
load measurements obtained by quantitative sequencing with
dPCR anchoring and by dPCR with taxon-specific primers
showed unity agreement for three of the four primer sets with
twofold deviation from the mean (Fig. 3b and Supplementary
Fig. 9). Sequencing quantification was consistently 2.5-fold higher
than dPCR quantification for the species Akkermansia mucini-
phila (Fig. 3b). We cannot confirm amplification bias as a factor
because the error did not depend on the number of cycles used in
library preparation. An alternative factor could be a discrepancy
in coverage/specificity between the taxon-specific and universal
primer sets. We next tested the limits of the sequencing accuracy
as a factor of input DNA load. A 10x dilution series of a cecum
sample was created to cover input DNA loads of 1 × 108 copies
down to 1 × 104 copies. Minimal differences in beta diversity
(Aitchison distance) between the undiluted and diluted samples
were observed with a trend towards increasing difference with
decreasing DNA load (Fig. 3c). This negative correlation between
beta diversity and microbial load is not unexpected due to the
higher presence of contaminant species from our negative con-
trols in the lower input samples (Fig. 2b).

Absolute vs. relative abundance analysis in a ketogenic-diet
study. To test the impact of using a quantitative framework for
16S rRNA gene amplicon sequencing, we performed a ketogenic-
diet study. Our goals were twofold. First, we wished to test
whether absolute instead of relative microbial abundances can
more accurately quantify changes in microbial taxa between study
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groups. Second, we wished to investigate how using a
quantitative-sequencing framework can guide the interpretation
of changes in taxa across study conditions. We emphasize that
our objective was not to make claims about the effect of a keto-
genic diet on the microbiome, but rather to use this model as an
illustration of the added benefits of using this quantitative-
sequencing framework.

After one week on a standard chow diet, 4-week-old Swiss
Webster mice were split into two groups (n= 6 each): one was
fed a ketogenic diet and the other a vitamin and mineral-matched
control diet (Supplementary Table 3). Stool was sampled
immediately before the two diets were introduced (day 0), and
again at days 4, 7, and 10. Additionally, on day 10, all mice were
euthanized and lumenal and mucosal samples were collected
from throughout the GI tract (Fig. 4a). Microbial loads
(quantified with dPCR) ranged from ~109 16S rRNA gene
copies/g in small intestinal mucosa to ~1012 16S rRNA gene
copies/g in stool. On average, we observed lower microbial DNA
loads in the mice on the ketogenic diet compared with mice on
the control diet, except in the stomach, where loads were similar
in mice on both diets (Fig. 4b).

All stool samples and roughly half of the samples for all other
GI sites (evenly distributed across mice on the two diets)
underwent 16S rRNA gene amplicon sequencing. Ordination
methods (PCA, PCoA, NMDS, etc.) are a common exploratory
data-analysis technique in the microbiome field. Common
transformation techniques based on non-Euclidian distances
(e.g., Bray–Curtis, UniFrac) can skew the accuracy of visualiza-
tions of relative data (Supplementary Fig. 6a)11. We used the
centered log-ratio transformation (CLR, often used to compute

the Aitchison distance) to handle compositional effects, and
performed PCA on the transformed absolute-abundance data for
all samples from the final collection day (Fig. 4c). A clear
separation along the first two principal components (PC) was
observed. Separation along PC1 was related to the location within
the GI tract whereas separation along PC2 was related to the diet.
The PCA analysis suggested that stomach samples were
distributed somewhere in-between small-intestine and large-
intestine samples, possibly resulting from coprophagy in
mice32,33. Additionally, the mucosal and lumenal samples from
the small-intestine on the control diet seemed to be closer
together than on the ketogenic diet (Fig. 4c).

We next investigated which taxa were contributing to
separation in our principal component space. We calculated the
scaled covariance between each taxon and the first two principal
components by multiplying the eigenvectors by the square-root of
their corresponding eigenvalues. These values are also known as
“feature loadings.” Plotting these feature loadings from smallest to
highest shows that Lactobacillus(g) and Lactococcus(g) had the
greatest impact on separation along PC1 in the direction of the
small intestinal samples whereas Ruminiclostridium(g) and
Lachnospiraceae(f) separated in the direction of the large-
intestine (Fig. 4d). This matches with what we know about the
major genera commonly present in the small and large-
intestine45. Along PC2 (the “diet axis”), the top two contributing
taxa towards the control diet were Turicibacter(g) and Marvin-
bryantia(g), while towards the ketogenic diet Akkermansia(g) and
Enterococcus(g) had the greatest covariance.

Although the CLR transformation preserves distances in
principal component space regardless of whether the starting
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data are relative or absolute, it normalizes out the differences in
total loads by looking at log ratios between each taxon’s
abundance and the geometric mean of the sample (Fig. 4c;
Supplementary Fig. 6b). In many cases, we want to know if the
absolute load of a taxon is higher or lower under different
conditions (e.g., in mice on ketogenic and control diets). When
the total microbial load varies among samples, analyses of relative
abundance cannot determine which taxa are differentially
abundant (Fig. 1). To assess the impact of using absolute
quantification in analyses, we analyzed microbiomes of stool
samples from mice on ketogenic and control diets. PCA analysis
on the CLR-transformed relative abundances of microbial taxa
showed separation between the two diets (Fig. 5a). Feature
loadings were analyzed as before, but this time total impact of
each taxon on the PC space was plotted, which was defined as the
sum of the feature loading vectors in PC1 and PC2 (Fig. 5b). The
same analysis was performed on the log-transformed absolute-

abundance data (Fig. 5a). Separation between diets is clear in both
relative and absolute-abundance analyses, but the contribution of
each taxon to the separation differed in direction and magnitude.
Comparing the magnitude of feature loadings for two taxa,
Akkermansia(g) and Acetatifactor(g), between the relative and
absolute PCA plots showed obvious differences in the contribu-
tion of a given taxon to the separation in principal component
space. Analysis of relative-abundance data implies that Akker-
mansia(g) has the biggest contribution on separation between
diets in PC space whereas the absolute-abundance data implies
that ~40% of the taxa in the sample have a greater contribution
than Akkermansia(g) to the separation between the diets in PC
space.

PCA is only an exploratory data-analysis technique, so we next
used a non-parametric statistical test to test for differentially
abundant taxa in stool samples from mice on control and
ketogenic diets (Fig. 5c)46. We performed separate analyses of the
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Fig. 4 Microbial absolute abundances provide separation between GI locations of mice on ketogenic or control diets. Analysis of data comparing
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component analysis, and the top taxa driving the separation of samples along the principal components. a Overview of experimental setup and sample-
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relative and absolute-abundance data. We plotted the –log10 P-
value for each taxon’s relative abundances against the corre-
sponding –log10 P-value for that taxon’s absolute abundances.
Points along the diagonal indicate congruence between the
predictions from the relative and absolute-abundance data. Points
in the upper left corner indicate taxa that differed between the
diets in the analysis of relative abundance but not in the analysis
of absolute abundance. Conversely, points in the lower right
corner indicate taxa that do not differ between diets in the
analysis of relative abundance but do differ in the analysis of
absolute abundance. Akkermansia(g) is an example of a microbe
that appears to differ (P= 6.49 × 10−3, Kruskal–Wallis) between
mice on the two diets in the relative-abundance analysis but not
in the absolute-abundance analysis (P= 3.37 × 10−1,
Kruskal–Wallis). Lachnospiraceae(f) showed the opposite trend;
in the relative-abundance analysis it appears unchanged (P=
6.31 × 10−1, Kruskal–Wallis) but in the absolute-abundance
analysis it differs (P= 3.95 × 10−3, Kruskal–Wallis) between the
two diets. Neither of these analyses is wrong, they are simply

asking two different questions: with relative data, the question is
whether the percentage of that microbe is different between two
conditions whereas with absolute data, the question is whether
the load of that microbe is different between two conditions.

To explore one example of how different interpretations of
how taxa differ between study conditions occur when using
relative vs. absolute abundance, we analyzed Akkermansia(g) in
stool across each of the three time points on experimental diets
(days 4, 7, and 10) and day 0 on chow diet. For simplicity in this
illustration, we compared data from one mouse on each diet
(Fig. 5d), but the trends hold on average between all mice on
the two diets (Supplementary Fig. 7). Analysis of relative
microbial abundance demonstrated ~3X higher abundance of
Akkermansia(g) in samples from the ketogenic compared with
the control diet on days 7 and 10. However, when analyzing the
difference in absolute abundance, more nuanced conclusions
emerged. The rise in Akkermansia(g) results from switching
mice from chow to experimental diets. The resulting Akker-
mansia(g) loads are similar in the two diets on days 7 and 10.
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shown). b The impact of each taxon in the principal component space (see text for details), with two taxa indicated to illustrate the comparison. c A
comparison of the taxa determined to be significantly different between diets using relative vs. absolute quantification (N= 6 mice per diet). P-values were
determined by Kruskal–Wallis. Each point represents a single taxon; blue points indicate taxa with the absolute value of P-value ratios greater than 2.5; red
points indicate two taxa that disagreed significantly between the relative and absolute analyses. d For illustrative purposes, a comparison of Akkermansia(g)
relative abundance (percentage of Akkermansia), absolute abundance (Akkermansia load), and total microbial load between stool samples from one
mouse on each diet (Ketogenic, orange; Control, red). Gray bars indicate loads prior to the diet switch when all mice were on the chow diet.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16224-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2590 | https://doi.org/10.1038/s41467-020-16224-6 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


However, the ketogenic diet reduces the total microbial load
relative to both chow and control diets, therefore leading to the
observed higher % of Akkermansia(g) in samples from mice on
ketogenic diet.

Absolute abundances allow for quantitative differential taxon
analysis. We next analyzed the absolute microbiota abundances
in stool and lower small intestinal mucosa samples from day 10.
A volcano plot, akin to those used in gene expression studies, was
used to represent the overall changes in taxa abundances between
the two diets, and the absolute abundance of each taxon was
indicated by the size of its symbol (Fig. 6a). P-values from the
Kruskal–Wallis tests were corrected for multiple hypothesis
testing with the Benjamini–Hochberg method, resulting in q-
values46,47. A false-discovery rate (FDR) of 10% was labeled on
the volcano plot and q-values < 0.1 were used as a cutoff for
designating differential taxa for downstream analyses. Compar-
isons between the two GI locations showed substantial differences
in microbial response to diet by location. In stool, ~66% of the
differential taxa were lower on the ketogenic diet vs. the control

diet whereas in the lower SI mucosa, >80% of the differential taxa
were more abundant in the ketogenic diet than control diet
(Supplementary Tables 4 and 5).

Next, we highlighted several specific differential taxa that were
discordant between stool and lower SI mucosa. (1) Bacteroides(g)
was lower on ketogenic diet in stool and higher on ketogenic diet
in lower SI mucosa. This type of result could lead researchers who
analyze stool samples to believe that lower levels of Bacteroides(g)
may be associated with a phenotype when it could be the opposite
if the phenotype is driven by the SI mucosal microbiota. (2)
Parabacteroides(g) and Lachnospiraceae GCA-900066575(g)
showed the highest fold changes (in opposite directions) in stool
but were not detected in the lower SI mucosa. The opposite was
observed for Escherichia(g), which was more abundant in the
ketogenic diet than the control diet in the lower SI mucosa but
was not detected in stool. (3) Akkermansia(g) and Desulfovi-
brionaceae(f) were more abundant in the ketogenic diet than the
control diet in the lower SI mucosa but were similar between the
two diets in stool. Such microbes could have a relationship with
phenotype through the small-intestine but would be missed if
only stool samples are analyzed.

Stool Differential Taxa
(n = 32, q -value < 0.1)

Fold Change
(+ Keto, –Control)

Abundance
(16S copies/g)

Quantification
Class

Lachnospiraceae NK4A136(g) 6.0 5.34×109 Quant
Bacteroides(g) –3.8 3.40×1010 Quant
Faecalibaculum(g) –3.8 3.87×1011 Quant
Bifidobacterium(g) –4.4 1.42×109 Quant
Lactococcus(g) –5.2 1.74×1010 Quant
Lactobacillus(g) –9.3 1.35×1011 Quant
Butyricimonas(g) –9.8 4.39×109 Quant
Parabacteroides(g) –32.2 3.3×109 Quant
Acetatifactor(g) ~ 5.5 5.2×108 Semi-Quant
Christensenellaceae(g) ~ –11.7 3.69×108 Semi-Quant
GCA-900066575(g) ~ 16 1.94×109 Semi-Quant
Dorea(g) + inf 7.8×107 Presence/Absence
cTPY-13(g) – inf 3.71×108 Presence/Absence
Candidatus Soleaferrea(g) -- ~6×107 No Quant
Anaerotruncus(g) -- ~2×108 No Quant

Lower SI Mucosa Differential
Taxa (n = 18, q -value < 0.1)

Fold Change
(+Keto, –Control)

Abundance
(16S copies/g)

Quantification
Class

Akkermansia(g) 6.7 2.57×108 Quant

Muribaculaceae(g) –2.8 3.48×108 Quant

Lactococcus(g) –3.6 4.31×108 Quant

Lactobacillus(g) –4.1 3.70×109 Quant

Lachnoclostridium(g) ~ 11.9 1.64×107 Semi-Quant

Lachnospiraceae(g) ~ 9 9.60×106 Semi-Quant

Bacteroides(g) ~ 3.8 5.51×106 Semi-Quant

Desulfovibrionaceae(f) ~ 3.5 4.29×106 Semi-Quant

Escherichia(g) + inf 2.96×106 Presence/Absence

Dorea(g) + inf 2.94×106 Presence/Absence

Ruminococcaceae(f) -- ~8.49×105 No Quant
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Fig. 6 Incorporating quantification limits enhances differential taxon analysis as shown in stool and SI mucosa. A quantitative framework that explicitly
incorporates limits of quantification separates differential microbial taxa into four classes, and for each GI location identifies a distinct set of differential
taxa, including taxa with opposite patterns in stool and SI mucosa. a, b Microbial taxa in stool (a) or lower small-intestine (b) mucosa in mice on ketogenic
(N= 6) and control (N= 6) diets. The fold change on the x-axis is the Log2 ratio of the average absolute loads of taxon loads in each diet. Negative values
indicate lower loads in ketogenic diet compared with control diet. The q-value for a taxon indicates the significance of the difference in absolute
abundances between the two diets and was obtained by Kruskal–Wallis with a Benjamini–Hochberg correction for multiple hypothesis testing. The Log10
absolute abundance of each taxon is indicated by circle size. Orange circles indicate taxa discussed in the main text, including taxa that show discordant
fold changes between stool and lower SI mucosa. The red dashed line is shown at a q-value representing a 10% false-discovery rate. c, d A subset of taxa
from stool (c) and lower SI mucosa (d) that were significantly different between diets (q-values < 0.1) and their corresponding fold change, absolute
abundance (larger of the average absolute abundances between the two diets), and quantification class. Quantification class is determined by whether one
or both measurements were above or below the lower limit of quantification and the limit of detection.
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A further breakdown of the differential taxa, using our
quantitative limits of sequencing accuracy (defined earlier),
allowed us to categorize four distinct scenarios that describe
how microbes differed between GI locations of mice on the two
diets. We refer to these four scenarios as “quantification classes”
(Fig. 6c, d). First, there were microbes that were present in one
diet and absent in the other (“presence/absence” class). For
example, Dorea(g), in stool, and Escherichia(g), in SI mucosa,
were absent from the control diet but present in the ketogenic
diet. Second, there were microbes above the detection limit but
below the quantitative limit in both diets (“no quant” class). For
example, in stool, Candidatus Soleaferrea(g), ranges in relative
abundance from 0.002% to 0.025%, well below the 30% CV
quantification threshold of 0.04% (as defined in Fig. 2d). Thus, we
cannot quantitatively define the difference of this microbe
between mice on the two diets. Third, microbes were above the
detection limit in both diets but only above the quantitative limit
in one of the diets (“semi-quant” class). For example, Desulfovi-
brionaceae(f) in the lower small-intestine mucosa was above the
detection limit in mice on both diets but only above the
quantitative limit in mice on the ketogenic diet, so although we
can be confident that a difference between the diets exists, we
cannot be confident in our measurement of the magnitude of that
difference. Fourth, microbes were found above the quantitative
limits in both diets (“quant” class). For example, for Parabacter-
oides(g) in stool, we can be confident in both the difference
between the diets (it was more abundant in the control diet) and
in the magnitude of that difference (a 32.2-fold difference). We
have the lowest confidence in the measured absolute fold change
of a taxon that is classified in the presence/absence class, and the
greatest confidence in a taxon in the quant class.

Discussion
In this study, we have shown that this technology performs across
biogeographically diverse samples with microbial loads spanning
over 6 orders of magnitude. Our lower limits of quantification for
total microbial load from lumenal (e.g., stool, cecum contents)
and mucosal samples were 4.2 × 105 16S rRNA gene copies/g and
1.0 × 107 16S rRNA gene copies/g, respectively. These lower limits
were mainly restricted by the column-based extractions used
which require <200 mg of sample input for lumenal contents and
<8mg of input for mucosal samples. This sample input is limited
by the high concentration of PCR inhibitors and host DNA in
these samples. New sample-processing methods that deplete host
DNA before extraction (e.g., the use of propidium monoazide
(PMA) or saponin with DNase)48,49 could help improve the
quantitative limits in samples with high levels of host DNA (e.g.,
mucosa) by removing non-microbial DNA before extraction.
Such host-depletion methods could also improve performance of
other current or future methods of quantitative sequencing.
Before these methods are introduced into quantitative-sequencing
protocols, they will require extensive validation to understand the
impacts host DNA depletion has on the microbial load and
composition of these samples, which will affect the accuracy of
any absolute-abundance technique. We showed that the precision
of any individual taxon’s abundance can be defined as a function
of that taxon’s relative abundance and the sequencing depth.
These accuracy thresholds generally state that all taxa with rela-
tive abundance >0.01% have a maximum %CV of 30%. We did
not quite reach the theoretical limit of Poisson precision (Fig. 2c),
which might be explained by slight differences in PCR amplifi-
cation between high- and low-abundance microbes, and could
potentially be corrected with single-molecule counting techniques
utilizing unique molecular identifiers (UMIs)50,51. Interestingly,
the precision of these abundance measurements did not differ

between high-input DNA samples (1.2 × 107 16S rRNA gene
copies) and low-input DNA samples (1.2 × 104 16S rRNA gene
copies), even though the low-input sample required ten addi-
tional PCR cycles. The lack of an increase in observed chimeric
sequences in the low-input sample indicates that PCR bias from
chimera generation may occur mainly during overamplification;
thus, we suggest monitoring library-prep amplification reactions
with qPCR and stopping reactions during the late exponential
phase30–33,43,44.

Our quantitative-sequencing method, as validated, is subject to
some of the same limitations of general 16S rRNA gene amplicon
sequencing. Primarily, the accuracy of any given taxon’s abun-
dance is believed to be impacted by amplification bias. We
showed that the abundances of Akkermansia muciniphila(s),
Lachnospiraceae(f), Bacteroidales(o), and Lactobacillaceae(f) could
be quantified with similar precision (2×), but different accuracy,
i.e., Akkermansia muciniphila(s) abundance was ~2.5X higher in
the quantitative-sequencing estimate compared with the estimate
from dPCR with taxa-specific primers. This offset was consistent
between samples with varying amplification cycles, indicating that
it may be related to differences in primer coverage between the
taxon-specific primer set and the universal primer set used in this
study. Nevertheless, such offsets should be similar if the same
library-prep conditions are used, so one can reliably compare taxa
among groups or studies and the use of UMIs may further
eliminate any potential amplification biases. We note that dPCR-
based total microbial load measurements should be more robust
to amplification biases of individual taxa. Additionally, the total
microbial load measurement will be affected by the 16S rRNA
primer set chosen and its respective taxonomic coverage. The
primers in this study were chosen to have broad coverage and
also to limit amplification of host mitochondrial DNA31–33, to
ensure proper quantification of mucosal and small-intestine
samples with high host DNA loads. Finally, to take full advantage
of the power of this quantitative framework, study designs must
incorporate proper sampling techniques to address spatio-
temporal variation in microbial abundances22.

A method-specific limitation is the requirement of an addi-
tional step, dPCR total microbial load quantification, which
consumes a portion of the extracted DNA sample. This limitation
is minor because dPCR generally requires at least 100 copies for a
measurement with a ~10% Poisson error, which is much less than
the roughly 10,000 copies required for sequencing. Additionally,
the absolute abundances are reported in 16S rRNA gene copies/g
and require conversion to number of cells/g, which has standard
limitations (e.g., the completeness of rRNA databases and copy-
number variation among similar species). However, when com-
paring taxa across study groups, the 16S rRNA gene copies per
taxonomic group should be similar. Finally, this method was only
validated for 16S rRNA gene amplicon sequencing; thus, further
validation would be required for applying this method to con-
verting metagenomic sequencing from relative to absolute
quantification. We were not able to directly compare our mea-
surements to other absolute-abundance techniques discussed in
the Introduction because these techniques have not been vali-
dated on the broad range of sample types and microbial loads
tested here (Supplementary Table 2). A fair side-by-side com-
parison would require re-optimization of the other techniques for
complex sample types, like those with high host DNA levels and
low-microbial biomass (e.g., mucosa).

We applied the quantitative framework to a murine ketogenic-
diet study to identify how microbial taxa at several GI locations
respond to diet. As total microbial loads were lower in the
ketogenic diet compared with the control, analysis of absolute
abundance was required to correctly identify differential taxa. The
lower load observed on the ketogenic diet can likely be explained
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by its lower fiber and carbohydrate content, as these dietary
components are main substrates for many gut microbes52. Many
factors (including diet) that induce changes in relative microbial
abundances can also impact total microbial load25,53. Even
among healthy mice on the same (chow) diet, total microbial
loads in stool can differ by 10 times25. Such variation in total
microbial load likely contributes to the noise in microbiome
studies. Another insight of this study was that we found different
patterns in the microbial communities at each GI sampling site.
For example, Akkermansia(g) loads did not differ between diets in
stool, but they were significantly greater in the small-intestine
mucosa in the ketogenic diet compared with the control. Bac-
teroides(g) load was lower in stool and greater in the small-
intestine mucosa in the ketogenic relative to the control diet.
Clearly, differential taxa at one GI location cannot be used as a
proxy for measuring differential taxa at another GI location. To
our knowledge, this is the first microbiome study to show that
microbial taxa in the small-intestine and the stool can change in
different directions and by different magnitudes in response to
diet. Furthermore, for each taxon, this method enables a com-
parison of absolute microbial abundance to limits of detection
and quantification. This comparison separates differential taxa
into four classes (Quant, Semi-Quant, No Quant, Presence/
Absence), which provide a convenient shortcut for more quan-
titative interpretation of microbiome studies. It should be noted
that the absence of a microbe in a dataset is a factor of the
sequencing depth, and just because a microbe is not found in the
sequencing data does not mean it is not in the sample. However,
with absolute anchoring, one can confidently say that when a
microbe is not found, that microbe is below a given abundance.

We have not focused on correlations among taxa in this
dataset. However, the absolute-abundance measurements acquired
using our method should help overcome many of the limitations
of correlation-based analyses on relative abundances54,55 and
enable analyses using standard methodologies like Spearman’s
rank correlation (Supplementary Fig. 8). However, further work
will be required to properly address the impact that corre-
lations between total microbial loads will have on taxon-based
correlation networks. In addition, new statistical and/or experi-
mental design methods may be required for interpreting the
correlations between a taxon’s presence and/or total load and
observed phenotypes.

This method overcomes three bottlenecks to wider adoption of
absolute quantitative measurements in microbiome analysis: (i)
performance across samples with a wide range of microbial loads;
(ii) performance across biogeographically diverse sample types;
(iii) explicit evaluation of limits of quantification of the method.
This method will be useful in other areas that benefit from
quantitative analysis, such as monitoring microbial communities
during manufacturing of complex probiotic mixtures56 and
monitoring changes of host-associated microbial communities
over time (e.g., in health, aging and development, disease pro-
gression, and during probiotic or other treatments). Applying
absolute quantification19–21,23–28,32,33 of microbial taxa to bio-
geographically relevant GI locations will provide researchers with
new insights in how microbial communities affect host
phenotypes.

Methods
Mice. All animal husbandry and experiments were approved by the Caltech
Institutional Animal Care and Use Committee (IACUC protocols #1646 and
#1769). Male and female germ free (GF) C57BL/6J mice were bred in the Animal
Research Facility at Caltech, and 4-week-old female specific-pathogen-free (SPF)
Swiss Webster mice were obtained from Taconic Biosciences (Germantown, NY,
USA). Mice were housed on heat-treated hardwood chip bedding (Aspen Chip
Bedding, Northeastern Products, Warrensburg, NY, USA) and provided with tissue
paper (Kleenex, Kimberly-Clark, Irving, TX, USA) nesting material. Experimental

animals were fed standard chow (Lab Diet 5010), 6:1 ketogenic diet (Envigo
TD.07797, Indianapolis, IN, USA; Supplementary Table 3) or vitamin- and
mineral-matched control diet (Envigo TD.150300; Supplementary Table 3). Diet
design and experimental setup were taken from a recently published study40. To
minimize cage effects, mice were housed two per cage with three cages per diet
group. Custom feeders, tin containers approximately 2.5 inches tall with a 1-inch
diameter hole in the top, were used for the ketogenic diet as it is a paste at room
temperature. Autoclaved water was provided ad libitum and cages were subjected
to a daily 13:11 light:dark cycle throughout the study. Mice were euthanized via
CO2 inhalation as approved by the Caltech IACUC in accordance with the
American Veterinary Medical Association Guidelines on Euthanasia57.

Microbial samples. The mock microbial community (Zymobiomics Microbial
Community Standard; D6300) was obtained from Zymo Research (Irvine, CA,
USA). This community is stored in DNA/RNA Shield, which could interfere with
extraction efficiency at high concentrations. We found that a 100 µL input of a 10x
dilution of the microbial community stock is the maximum input that the Qiagen
DNeasy Powersoil Pro Kit can handle without recovery losses. Negative control
blanks were also used, which included 100 µL of nuclease free water instead of
mock community.

Fresh stool samples were collected immediately after defecation from individual
mice and all collection occurred at approximately the same time of day. For
intestinal samples, the GIT was excised from the stomach to the anus. Contents
from each region of the intestine (stomach, upper half of SI, lower half of SI,
cecum, and colon) were collected by longitudinally opening each segment with a
scalpel and removing the content with forceps. Terminal colonic pellets are referred
to as stool. After contents were removed the intestinal tissue was washed by
vigorously shaking in cold sterile saline. The washed tissue was placed in a sterile
petri dish and then dabbed dry with a Kimwipe (VWR, Brisbane, CA, USA) before
scraping the surface of the tissue with a sterile glass slide. These scrapings were
collected as the mucosa samples. All samples were stored at −80 °C after cleaning
and before extraction of DNA.

DNA extraction. DNA was extracted from all samples by following the Qiagen
DNeasy Powersoil Pro Kit protocol (Qiagen; Valencia, CA, USA). Bead-beating
was performed with a Mini-BeadBeater (BioSpec, Bartlesville, OK, USA) for 4 min.
To ensure extraction columns were not overloaded, we used ~10 mg of scrapings
and ~50 mg of contents. Half of the lysed volume was loaded onto the column and
elution volume was 100 µL. Nanodrop (NanoDrop 2000, ThermoFisher Scientific)
measurements were performed with 2 µL of extracted DNA to ensure concentra-
tions were not close to the extraction column maximum binding capacity (20 µg).

Absolute abundance. The concentration of total 16S rRNA gene copies per
sample was measured using the Bio-Rad QX200 droplet dPCR system (Bio-Rad
Laboratories, Hercules, CA, USA). The concentration of the components in the
dPCR mix used in this study were as follows: 1x EvaGreen Droplet Generation Mix
(Bio-Rad), 500 nM forward primer, and 500 nM reverse primer. Universal primers
to calculate the total 16S rRNA gene concentrations were a modification to the
standard 515F-806R primers4 to reduce host mitochondrial rRNA gene amplifi-
cation in mucosal and small-intestine samples (Supplementary Table 6)31–33.
Thermocycling for universal primers was performed as follows: 95 °C for 5 min, 40
cycles of 95 °C for 30 s, 52 °C for 30 s, and 68 °C for 30 s, with a dye stabilization
step of 4 °C for 5 min and 90 °C for 5 min. All ramp rates were 2 °C per second. The
concentration of taxon-specific gene copies per sample was measured using a
similar dPCR protocol, except with different annealing temperatures. Annealing
temperatures during thermocycling for taxon-specific primers can be found in
Supplementary Table 6. The concentration of the components in the qPCR mix
used in this study were as follows: 1x SsoFast EvaGreen Supermix (Bio-Rad), 500
nM forward primer, and 500 nM reverse primer. Thermocycling was performed as
follows: 95 °C for 3 min, 40 cycles of 95 °C for 15 s, 52 °C for 30 s, and 68 °C for 30
s. All dPCR measurements are single replicates.

Concentrations of 16S rRNA gene per microliter of extraction were corrected
for elution volume and losses during extraction before normalizing to the input
sample mass (Eq. 1).

Microbial Load ¼ dPCR concentration*elution volume*
dead volume

extraction volume *
1

samplemass
ð1Þ

Absolute abundance of individual taxa was calculated either by dPCR with
taxon-specific primers or multiplying the total microbial load from Eq. 1 by the
relative abundance from 16S rRNA gene amplicon sequencing.

16S rRNA gene amplicon sequencing. Extracted DNA was amplified and
sequenced using barcoded universal primers and protocol modified to reduce
amplification of host DNA31–33. The variable 4 (V4) region of the 16S rRNA gene
was amplified in triplicate with the following PCR reaction components: 1 ×
5Prime Hotstart mastermix, 1X Evagreen, 500 nM forward and reverse primers.
Input template concentration varied. Amplification was monitored in a CFX96 RT-
PCR machine (Bio-Rad) and samples were removed once fluorescence measure-
ments reached ~10,000 RFU (late exponential phase). Cycling conditions were as
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follows: 94 °C for 3 min, up to 40 cycles of 94 °C for 45 s, 54 °C for 60 s, and 72 °C
for 90 s. Triplicate reactions that amplified were pooled together and quantified
with Kapa library quantification kit (Kapa Biosystems, KK4824, Wilmington, MA,
USA) before equimolar sample mixing. Libraries were concentrated and cleaned
using AMPureXP beads (Beckman Coulter, Brea, CA, USA). The final library was
quantified using a High Sensitivity D1000 Tapestation Chip. Sequencing was
performed by Fulgent Genetics (Temple City, CA, USA) using the Illumina MiSeq
platform and 2×300 bp reagent kit for paired-end sequencing.

16S rRNA gene amplicon data processing. Processing of all sequencing data was
performed using QIIME 2 2019.158. Raw sequence data were demultiplexed and
quality filtered using the q2-demux plugin followed by denoising with DADA259.
Chimeric read count estimates were estimated using DADA2. Beta diversity
metrics (Aitchison distance9, Bray–Curtis Dissimilarity) were estimated using the
q2-diversity plugin after samples were rarefied to the read-count level observed in
the sample that had the smallest number of reads. Rarefaction was used to force
zeros in the dataset to have the same probability (across samples) of arising from
the taxon being at an abundance below the limit of detection. Although rarefaction
may lower the statistical power of a dataset60 it helps decrease biases caused by
different sequencing depths across samples12. Taxonomy was assigned to amplicon
sequence variants (ASVs) using the q2-feature-classifier61 classify-sklearn naïve
Bayes taxonomy classifier against the Silva62 132 99% OTUs references from the
515F/806R region. All datasets were collapsed to the genus level before downstream
analyses. All downstream analyses were performed in IPython primarily through
use of the Pandas, Numpy, and Scikit-learn libraries.

Data transforms and dimensionality reduction. For dimensionality reduction
techniques requiring a log transform, a pseudo-count of 1 read was added to all
taxa. With relative abundance data, the centered log-ratio transform was used
(Eq. 2) to handle compositional effects, whereas a log transform was applied to the
absolute-abundance data to handle heteroscedasticity in the data.

xclr ¼ log x1
G xð Þ

� �
; log x2

G Xð Þ
� �

; ¼ ; log xD
G Xð Þ

� �h i

whereG Xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1*x2*¼ *xD

D
p ð2Þ

For comparative purposes, principal co-ordinates analysis (PCoA) was also
performed using the Bray–Curtis dissimilarity metric. Principal component
analysis (PCA) and PCoA were performed using scikit-learn decomposition
methods. Feature loadings for each principal component were calculated by
multiplying each eigenvector by the square-root of its corresponding eigenvalue.
All data were visualized using matplotlib and seaborn.

Taxa limits of quantification. Poisson confidence intervals were calculated by
bootstrapping Poisson samples for rate parameters across the percentage abun-
dance range (0–1) corresponding to either the input DNA copies or number of
reads. We took 104 bootstrap replicates with a Poisson sample size of 4 to match
the number of replicates we sequenced. The %CV for each replicate was calculated
and the middle 95th percentile was shown as the confidence interval.

Thresholds for percentage abundance were calculated by first fitting a negative
exponential curve y= ax−b to the plot of %CV vs. percentage abundance using
SciPy. Then the percentage abundance at a given %CV threshold was determined.
This process was repeated after subsampling the data at decreasing read depths to
find the relationship between percent abundance accuracy limits and
sequencing depth.

Measurement uncertainty. When measuring the absolute abundance of a given
taxon in a sample, many factors contribute to the uncertainty of the measurement.
Two primary factors, extraction efficiency and average amplification efficiency for
each taxon, should be equivalent for each taxon across samples processed under
identical conditions and thus neither should impact the discovery of differential
taxa. However, other factors contributing to the uncertainty of an absolute-
abundance measurement vary among samples and can impact the discovery of
differential taxa. At least six independent errors can contribute to the overall
uncertainty of a taxon’s absolute abundance: (i) extraction error (ii) the Poisson
sampling error of dPCR, (iii) the Poisson sampling error of sample input into an
amplification reaction to make a sequencing library, (iv) the uncertainty in the
amplification rates among sequences, (v) the Poisson sampling error of the
sequencing machine, and (vi) the uncertainty in taxonomic assignment resulting
from different software programs that differ in how they convert raw sequencing
reads to a table of read counts per taxon.

To measure the total error in our absolute-abundance measurements, we
compared the true absolute load value of four “representative” taxa (taxa that are
common gut flora from different taxonomic ranks) as measured by taxon-specific
dPCR, with the value obtained from our method of quantitative sequencing with
dPCR anchoring (Fig. 3b) and then analyzed the relative error in these
measurements, defined as the log2 of the observed taxon load over the true taxon
load. We constructed a quantile–quantile (Q–Q) plot (Supplementary Fig. 9) of the
mean-centered log2 relative errors and found that the errors appeared normally
distributed. We confirmed this by running a Shapiro–Wilk test (P-value= 0.272)

on the mean-centered log2 relative errors, which uses a null hypothesis that the
dataset comes from a normal distribution. The standard deviation of the mean-
centered log2 relative errors was 0.48, which results in a 95% confidence interval of
~(−1,1), indicating a 2x precision on each individual measurement. However, as
seen with Akkermansia(g) (Fig. 3b), accuracy offsets may exist for specific taxa. It is
important to note that all samples used in this analysis had relative abundances
above the 50% CV threshold defined in Fig. 2d, and thus we do not make any
conclusions about the precision of absolute-abundance measurements for taxa with
relative abundances below the 50% CV threshold.

Biological uncertainty and statistical inference methods. When measuring the
absolute abundance of a taxon from a defined population (e.g., healthy adults, mice
on a ketogenic diet) it is unlikely this abundance comes from a well-defined sta-
tistical distribution. Given this inherent limitation, we used non-parametric sta-
tistical tests, which do not rely on distributional assumptions, for our differential
abundance analyses.

Statistical comparisons between diet groups were analyzed using the
Kruskal–Wallis46 rank sums test with Benjamini–Hochberg47 multiple hypothesis
testing correction. All statistical tests were implemented using SciPy.stats Kruskal
function and statsmodels.stats.multitest multipletests function with the fdr_bh
option for Benjamini–Hochberg multiple-testing correction. When calculating
differentially abundant taxa, only taxa present in at least 4 out of 6 mice in a group
were considered to remove fold-change outliers when plotting (Fig. 6a, b).

Correlation analysis. Samples were separated by diet (ketogenic and control) and
only stool samples were used (days 4, 7, and 10). The total microbial load and top
30 taxa with the highest average absolute abundance were selected for analysis.
Spearman’s rank correlation coefficient and corresponding P-values were calcu-
lated for all pairwise interactions using the scipy.stats.spearmanr function.
Benjamini–Hochberg procedure was to calculate q-values, which account for
multiple hypothesis testing. A heatmap of the diagonal correlation matrix was
plotted (Supplementary Fig. 8) for q-values <10% FDR.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The complete sequencing data generated during this study are available in the National
Center for Biotechnology Information Sequence Read Archive repository under study
accession number PRJNA575097. Raw data for all figures are provided as Source data file.
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